...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Computational homogenization and micromechanical analysis of textured polycrystalline materials
【24h】

Computational homogenization and micromechanical analysis of textured polycrystalline materials

机译:织构化多晶材料的计算均质化和微机械分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We present a numerical methodology for the thermomechanical analysis of real polycrystalline material microstructures obtained using electron backscatter diffraction techniques. The asymptotic expansion homogenization method is used in conjunction with the finite element method to perform comprehensive micromechanical analyses and determine the effective thermoelastic properties of polycrystalline materials. Smooth grain boundaries are generated from the discretely sampled electron backscatter diffraction data of real polycrystalline materials. The microscale displacements, strains and stresses are related to the macroscale temperature change and strains through 21 distinct characteristic functions. The three-dimensional equilibrium equations at the microscale yield a system of partial differential equations for the characteristic functions which are solved using the finite element method. The effective properties of the polycrystalline material are obtained from the single-crystal thermoelastic properties, crystallographic orientations of the crystallites and the characteristic functions. The proposed methodology is demonstrated by considering electron backscatter diffraction maps of zinc, stainless steel, and natural quartzite rock. Results are presented for homogenized properties such as elastic stiffnesses, thermal expansion coefficients, and seismic wavespeeds, as well as for microscale stress distributions resulting from different macroscale loading conditions. The bulk thermoelastic properties are compared with those obtained using the Voigt, Reuss, Voigt Reuss Hill and self-consistent methods. Details are provided regarding a freely available software package that has been developed for the thermomechanical analysis of polycrystalline materials based on the proposed numerical framework. (C) 2016 Elsevier B.V. All rights reserved.
机译:我们提供了使用电子背散射衍射技术获得的真实多晶材料微观结构的热力学分析的数值方法。渐近膨胀均匀化方法与有限元方法结合使用,可以进行全面的微机械分析并确定多晶材料的有效热弹性。光滑的晶界是从真实多晶材料的离散采样电子背散射衍射数据生成的。微观位移,应变和应力通过21个不同的特征函数与宏观温度变化和应变有关。在微观尺度上的三维平衡方程产生了特征函数的偏微分方程组,这是使用有限元方法求解的。多晶材料的有效性能是从单晶热弹性性能,微晶的晶体学取向和特性函数获得的。通过考虑锌,不锈钢和天然石英岩岩石的电子背散射衍射图证明了所提出的方法。给出了均质特性的结果,例如弹性刚度,热膨胀系数和地震波速,以及不同宏观尺度加载条件导致的微观尺度应力分布。将本体热弹性性能与使用Voigt,Reuss,Voigt Reuss Hill和自洽方法获得的材料进行比较。提供了有关免费提供的软件包的详细信息,该软件包已基于建议的数值框架开发用于多晶材料的热机械分析。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号