首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A phase-field/ALE method for simulating fluid-structure interactions in two-phase flow
【24h】

A phase-field/ALE method for simulating fluid-structure interactions in two-phase flow

机译:用于模拟两相流中流固耦合的相场/ ALE方法

获取原文
获取原文并翻译 | 示例

摘要

We present a phase-field/ALE method for simulating fluid-structure interactions (FSI) in two-phase flow. We solve the Navier-Stokes equation coupled with the Cahn-Hilliard equation and the structure equation in an arbitrary Lagrangian Eulerian (ALE) framework. For the fluid solver, a spectral/hp element method is employed for spatial discretization and backward differentiation for time discretization. For the structure solver, a Galerkin method is used in Lagrangian coordinates for spatial discretization and the Newmark-beta scheme for time discretization. The mesh is updated from the initial configuration by a harmonic mapping constructed from the velocity of the interface between the fluid and the structure subdomains. To test the accuracy of the phase-field approach of this multi-physics method, we first simulate two-phase co-annular laminar flow in a stationary pipe and compare the results with the analytical solution. To test the accuracy of the FSI solver, we simulate a pipe conveying single-phase flow and compare the results with an existing validated code (Newman and Karniadakis, 1997). Finally, we present two numerical simulations of FSI in two-phase flow, specifically, in a flexible pipe conveying two fluids that induce self-sustained oscillations, and in external cross flow past a circular cylinder that modifies the classical vortex street due to a Kelvin-Helmholtz instability. These three-dimensional simulations demonstrate the capability of the method in dealing with FSI problems in two-phase flow with moving grids as well as its robustness and efficiency in handling different fluids with large contrast in physical properties. (C) 2016 Published by Elsevier B.V.
机译:我们提出了一种相场/ ALE方法来模拟两相流中的流固耦合(FSI)。我们在任意拉格朗日欧拉(ALE)框架中求解Navier-Stokes方程以及Cahn-Hilliard方程和结构方程。对于流体求解器,频谱/ hp元素方法用于空间离散化,而后向差分用于时间离散化。对于结构求解器,在拉格朗日坐标中使用Galerkin方法进行空间离散化,在Newmark-beta方案中使用时间离散化。通过从流体和结构子域之间的界面速度构建的谐波映射,可以从初始配置更新网格。为了测试这种多物理场方法的相场方法的准确性,我们首先在固定管中模拟两相同环形层流并将其结果与解析解进行比较。为了测试FSI求解器的准确性,我们模拟了输送单相流的管道,并将结果与​​现有的经过验证的代码进行比较(Newman和Karniadakis,1997)。最后,我们介绍了两相流中FSI的两个数值模拟,特别是在输送两种引起自持振荡的流体的挠性管中以及通过圆柱体的外部交叉流中,由于开尔文的存在,圆柱体改变了经典涡街-亥姆霍兹不稳定性。这些三维模拟显示了该方法在具有移动网格的两相流中处理FSI问题的能力,以及在处理物理性质大为不同的不同流体时的鲁棒性和效率。 (C)2016由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号