首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Transient elastic wave analysis of 3-D large-scale cavities by fast multipole BEM using implicit Runge-Kutta convolution quadrature
【24h】

Transient elastic wave analysis of 3-D large-scale cavities by fast multipole BEM using implicit Runge-Kutta convolution quadrature

机译:使用隐式Runge-Kutta卷积求积法的快速多极BEM对3D大腔体进行瞬态弹性波分析

获取原文
获取原文并翻译 | 示例

摘要

Existing boundary element methods (BEMs) have been proven to be efficient numerical techniques particularly in modeling wave propagation problems but still remain limitations in solving large-scale problems. The main disadvantages may be caused by several problems, including high cost and large amount of computer memory for the computation. A time-domain BEM in which a collocation method is used for the time discretization also shows numerical instability for small CFL (Courant-Friedrichs-Lewy) number. In this work, we propose a new three-dimensional (3-D) approach for solving transient elastic wave propagation problems of large-scale spherical and spheroidal cavities by the convolution quadrature BEM accelerated by fast multipole method (FMM) using an implicit Runge-Kutta scheme (in abbreviation, we name it as IRK-based CQ-FMBEM). Two special techniques pertaining to the FMM including the scaling of modified spherical Bessel functions and the truncation method are used to enhance the efficiency and stability of our proposed method. This approach is found to be particularly suitable for 3-D large-scale problems as its high accuracy, stability of time-marching process, and computational efficiency. These properties are subsequently illustrated through numerical examples dealing with large-scale wave problems of 3-D single spherical and spheroidal cavities and multiple equally and irregularly spherical cavities. The accuracy of the present formulation is verified by comparing the obtained results with available reference solutions in the literature. Some numerical aspects of time increments, sizes and topological shapes of cavities, and their influences on the deformations and the waveforms are investigated. Also, detailed investigation of the computational efficiency of our proposed method, such as CPU time, required memory, etc. is presented. All the implementation tasks are carried out using the Tokyo Tech. supercomputer which is called TSUBAME 2.5 [42]. (C) 2016 Elsevier B.V. All rights reserved.
机译:现有的边界元方法(BEM)已被证明是有效的数值技术,尤其是在对波传播问题进行建模时,但在解决大规模问题方面仍然存在局限性。主要缺点可能是由几个问题引起的,包括高成本和用于计算的大量计算机内存。时域BEM(其中并置方法用于时间离散化)还显示了对于小CFL(Courant-Friedrichs-Lewy)数的数值不稳定性。在这项工作中,我们提出了一种新的三维(3-D)方法,该方法通过隐式Runge-F加速快速多极方法(FMM)的卷积正交BEM解决大型球形和球形空腔的瞬态弹性波传播问题。 Kutta方案(在缩写中,我们将其命名为基于IRK的CQ-FMBEM)。与FMM有关的两种特殊技术包括改进的球形Bessel函数的缩放比例和截断方法,用于提高我们提出的方法的效率和稳定性。发现该方法由于其高精度,时间前进过程的稳定性和计算效率而特别适合于3D大规模问题。随后,通过数值示例说明这些属性,这些示例涉及3-D单球形和球形空腔以及多个相等且不规则球形空腔的大规模波动问题。通过将获得的结果与文献中可用的参考溶液进行比较,可以验证本制剂的准确性。研究了时间增量,腔体的大小和拓扑形状的一些数值方面,以及它们对形变和波形的影响。此外,还详细研究了我们提出的方法的计算效率,例如CPU时间,所需的内存等。所有执行任务均使用Tokyo Tech进行。超级计算机,称为TSUBAME 2.5 [42]。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号