首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Homogenization and multiscale stability analysis in finite magneto-electro-elasticity. Application to soft matter EE, ME and MEE composites
【24h】

Homogenization and multiscale stability analysis in finite magneto-electro-elasticity. Application to soft matter EE, ME and MEE composites

机译:有限磁电弹性的均质化和多尺度稳定性分析。在软质EE,ME和MEE复合材料中的应用

获取原文

摘要

Soft matter electro-elastic (EE), magneto-elastic (ME) and magneto-electro-elastic (MEE) composites exhibit coupled material behavior at large strains. Examples are electro-active polymers and magneto-rheological elastomers, which respond by a deformation to applied electric or magnetic fields, and are used in advanced industrial environments as sensors and actuators. Polymer-based magneto-electric-elastic composites are a new class of tailor-made materials with promising future applications. Here, a magneto-electric coupling effect is achieved as a homogenized macro-response of the composite with electro-active and magneto-active constituents. These soft composite materials show different types of instability phenomena, which even might be exploited for future enhancement of their performance. This covers micro-structural instabilities, such as buckling of micro-fibers or particles, as well as material instabilities in the form of limit-points in the local constitutive response. Here, the homogenization-based scale bridging links long wavelength micro-structural instabilities to material instabilities at the macro-scale. This work outlines a comprehensive framework of an energy-based computational homogenization in electro-magneto-mechanics, which allows a tracking of postcritical solution paths such as those related to pull-in instabilities. It provides variational-based definitions of multiscale structural and material stability phenomena. The starting point is a minimization principle of averaged electromagneto-elastic energy, that is discretized by using electric and magnetic vector potentials. Next, computationally more effective representations based on scalar potentials are considered by a reformulation of the energy in terms of an averaged enthalpy functional. Structural stability is analyzed based on perturbations of the averaged energy, while local material stability is defined by a generalized quasi-convexity condition. It is shown that the incremental arrays which govern the stability criteria appear within the convenient enthalpy-based representation in a distinct diagonal form, containing mechanical and electro-magnetic partitions. Representative simulations demonstrate a tracking of inhomogeneous EE, ME and MEE composites, showing the development of postcritical zones in the microstructure and a possible unstable homogenized material response. (C) 2015 Elsevier B.V. All rights reserved.
机译:软物质电弹性(EE),磁弹性(ME)和磁电弹性(MEE)复合材料在大应变下表现出耦合的材料性能。例子是电活性聚合物和磁流变弹性体,它们通过变形对施加的电场或磁场作出响应,并在先进的工业环境中用作传感器和致动器。聚合物基磁电弹性复合材料是一类新型的定制材料,具有广阔的应用前景。在此,通过具有电活性和磁活性成分的复合材料的均匀的宏观响应,实现了磁电耦合作用。这些软复合材料显示出不同类型的不稳定性现象,甚至可能会被用于进一步提高其性能。这涵盖了微观结构的不稳定性,例如微纤维或颗粒的屈曲,以及局部本构响应中以极限点形式出现的材料不稳定性。在这里,基于均质化的尺度桥接将长波长的微观结构不稳定性与宏观尺度上的材料不稳定性联系在一起。这项工作概述了电磁力学中基于能量的计算同质化的综合框架,该框架可以跟踪诸如与拉入不稳定性相关的后临界解路径。它提供了基于变量的多尺度结构和材料稳定性现象的定义。起点是平均电磁弹性能的最小化原理,该原理通过使用电和磁矢量势来离散化。接下来,根据平均焓函数,通过重新定义能量,可以考虑基于标量势的计算上更有效的表示。基于平均能量的扰动来分析结构稳定性,而局部材料的稳定性则由广义的拟凸条件定义。结果表明,支配稳定性标准的增量阵列在方便的基于焓的表示中以明显的对角线形式出现,其中包含机械和电磁分区。代表性的模拟显示了对不均匀EE,ME和MEE复合材料的跟踪,显示了微结构中后临界区的发展以及可能不稳定的均质材料响应。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号