首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A stable P1/P1 finite element for finite strain von Mises elasto-plasticity
【24h】

A stable P1/P1 finite element for finite strain von Mises elasto-plasticity

机译:有限应变von Mises弹塑性的稳定P1 / P1有限元

获取原文
获取原文并翻译 | 示例

摘要

The finite element P1/P1 is well known for being unsuitable for the simulation of incompressible material flows. In von Mises elasto-plasticity, the volume changes can become negligible when the plastic strain grows higher than the elastic strain. Thus, the material flow is nearly incompressible even if a small volumic elastic strain persists. In this context, the finite element P1/P1 leads to pressure oscillations which need to be addressed for achieving satisfactory solutions. The aim of this work is to propose a stabilized formulation without introducing new degrees of freedom or stabilization parameters as for sub-grid scale techniques. Unlike to the standard SUPG method, the stabilization depends on the time step. Examples show that a first order accuracy can be obtained for the pressure and the approach developed can be well suited for cyclic loadings. (C) 2017 Elsevier B.V. All rights reserved.
机译:众所周知,有限元P1 / P1不适合模拟不可压缩的物料流。在冯·米塞斯的弹塑性中,当塑性应变大于弹性应变时,体积变化可以忽略不计。因此,即使持续存在较小的体积弹性应变,材料流也几乎不可压缩。在这种情况下,有限元P1 / P1会导致压力振荡,为获得令人满意的解决方案,必须解决该压力振荡。这项工作的目的是提出一种稳定的公式,而不引入像子网格规模技术那样的新的自由度或稳定参数。与标准SUPG方法不同,稳定取决于时间步长。实例表明,对于压力可以获得一阶精度,并且所开发的方法可以很好地适合于循环载荷。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号