首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A phase-based interior penalty discontinuous Galerkin method for the Helmholtz equation with spatially varying wavenumber
【24h】

A phase-based interior penalty discontinuous Galerkin method for the Helmholtz equation with spatially varying wavenumber

机译:具有空间变化波数的亥姆霍兹方程的基于相位的内部惩罚不连续伽勒金方法

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with an interior penalty discontinuous Galerkin (IPDG) method based on a flexible type of nonpolynomial local approximation space for the Helmholtz equation with varying wavenumber. The local approximation space consists of multiple polynomial-modulated phase functions which can be chosen according to the phase information of the solution. We obtain some approximation properties for this space and a priori L-2 error estimates for the h-convergence of the IPDG method using duality argument. We also provide ample numerical examples to show that, building phase information into the local spaces often gives more accurate results comparing to using the standard polynomial spaces. (C) 2017 Elsevier B.V. All rights reserved.
机译:本文针对具有可变波数的Helmholtz方程,基于一种灵活的非多项式局部逼近空间类型的内部罚分不连续伽勒金(IPDG)方法。局部逼近空间由多个多项式调制的相位函数组成,可以根据解的相位信息进行选择。我们使用对偶参数为该空间获得了一些近似性质,并为IPDG方法的h收敛获得了一个先验L-2误差估计。我们还提供了足够的数值示例,表明与使用标准多项式空间相比,将相位信息构建到局部空间中通常可以提供更准确的结果。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号