首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Thermodynamically consistent modeling and simulation of multi-component two-phase flow with partial miscibility
【24h】

Thermodynamically consistent modeling and simulation of multi-component two-phase flow with partial miscibility

机译:具有部分混溶性的多组分两相流的热力学一致性建模和仿真

获取原文
获取原文并翻译 | 示例

摘要

A general diffuse interface model with a realistic equation of state (e. g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is an attractive alternative recently over the NPT-based framework to model the realistic fluids. The proposed model uses the Helmholtz free energy rather than Gibbs free energy in the NPT-based framework. Different from the classical routines, we combine the first law of thermodynamics and related thermodynamical relations to derive the entropy balance equation, and then we derive a transport equation of the Helmholtz free energy density. Furthermore, by using the second law of thermodynamics, we derive a set of unified equations for both interfaces and bulk phases that can describe the partial miscibility of multiple fluids. A relation between the pressure gradient and chemical potential gradients is established, and this relation leads to a new formulation of the momentum balance equation, which demonstrates that chemical potential gradients become the primary driving force of fluid motion. Moreover, we prove that the proposed model satisfies the total (free) energy dissipation with time. For numerical simulation of the proposed model, the key difficulties result from the strong nonlinearity of Helmholtz free energy density and tight coupling relations between molar densities and velocity. To resolve these problems, we propose a novel convex-concave splitting of Helmholtz free energy density and deal well with the coupling relations between molar densities and velocity through very careful physical observations with a mathematical rigor. We prove that the proposed numerical scheme can preserve the discrete (free) energy dissipation. Numerical tests are carried out to verify the effectiveness of the proposed method. (C) 2017 Elsevier B.V. All rights reserved.
机译:提出了一种具有逼真的状态方程(例如Peng-Robinson状态方程)的通用扩散界面模型,该模型基于基于NVT的框架的原理来描述多组分两相流体流,这是最近的一个有吸引力的替代方案基于NPT的框架来模拟现实流体。提议的模型在基于NPT的框架中使用亥姆霍兹自由能而不是吉布斯自由能。与经典例程不同,我们结合热力学第一定律和相关的热力学关系来得出熵平衡方程,然后得出亥姆霍兹自由能密度的输运方程。此外,通过使用热力学第二定律,我们为界面和本体相导出了一组统一的方程,可以描述多种流体的部分混溶性。建立了压力梯度与化学势梯度之间的关系,这种关系导致动量平衡方程的新公式化,表明化学势梯度成为流体运动的主要驱动力。此外,我们证明了所提出的模型可以满足总的(自由)能量耗散随时间的变化。对于所提出模型的数值模拟,关键困难来自亥姆霍兹自由能密度的强非线性和摩尔密度与速度之间的紧密耦合关系。为了解决这些问题,我们提出了一种新颖的亥姆霍兹自由能密度的凸凹分裂方法,并通过严格的数学严密物理观察,很好地处理了摩尔密度与速度之间的耦合关系。我们证明了所提出的数值方案可以保留离散的(自由)能量耗散。进行了数值测试,验证了所提方法的有效性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号