首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A new reliability-based data-driven approach for noisy experimental data with physical constraints
【24h】

A new reliability-based data-driven approach for noisy experimental data with physical constraints

机译:一种新的基于可靠性的数据驱动方法,用于处理有物理约束的嘈杂实验数据

获取原文
获取原文并翻译 | 示例

摘要

Data Science has burst into simulation-based engineering sciences with an impressive impulse. However, data are never uncertainty-free and a suitable approach is needed to face data measurement errors and their intrinsic randomness in problems with well-established physical constraints. As in previous works, this problem is here faced by hybridizing a standard mathematical modeling approach with a new data-driven solver accounting for the phenomenological part of the problem, with the aim of finding a solution point, satisfying some constraints, that minimizes a distance to a given data-set. However, unlike such works that are established in a deterministic framework, we use the Mahalanobis distance in order to incorporate statistical second order uncertainty of data in computations, i.e. variance and correlation. We develop the underlying stochastic theoretical framework and establish the fundamental mathematical and statistical properties. The performance of the resulting reliability-based data-driven procedure is evaluated in a simple but illustrative unidimensional problem as well as in a more realistic solution of a 3D structural problem with a material with intrinsically random constitutive behavior as concrete. The results show, in comparison with other data-driven solvers, better convergence, higher accuracy, clearer interpretation, and major flexibility besides the relevance of allowing uncertainty management with low computational demand. (C) 2017 Elsevier B.V. All rights reserved.
机译:数据科学以惊人的冲动发展为基于仿真的工程科学。但是,数据永远都不会没有不确定性,因此需要一种适当的方法来应对数据测量错误及其在具有公认的物理约束的问题中固有的随机性。与以前的工作一样,这里将标准的数学建模方法与新的数据驱动求解器混合使用,以解决问题的现象学部分,从而找到一个满足某些约束,最小化距离的求解点,从而解决该问题。到给定的数据集。但是,与在确定性框架中建立的此类工作不同,我们使用马哈拉诺比斯距离(Mahalanobis distance)以便将数据的统计二阶不确定性纳入计算中,即方差和相关性。我们开发了基本的随机理论框架,并建立了基本的数学和统计属性。在简单但说明性的一维问题中以及在将具有固有随机本构行为的材料作为具体材料的3D结构问题的更现实解决方案中,评估了基于可靠性的数据驱动过程的性能。结果表明,与其他以数据为基础的求解器相比,该算法具有更好的收敛性,更高的准确性,更清晰的解释和较大的灵活性,并且可以降低计算需求,并允许不确定性管理。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号