首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Parametric non-intrusive model order reduction for flow-fields using unsupervised machine learning
【24h】

Parametric non-intrusive model order reduction for flow-fields using unsupervised machine learning

机译:使用无监督机器学习的流场的参数非侵入式模型顺序减少

获取原文
获取原文并翻译 | 示例

摘要

An improved data-driven non-intrusive model order reduction (MOR) methodology capable of interpolating time-transient flow-fields and other types of data with respect to the parameters is proposed. The proposed MOR method comprises the following two stages: MOR and interpolation. For the MOR, modified proper orthogonal decomposition (POD) is used to collect the parametrically independent POD modes and dependent coefficients. An interpolation of the POD coefficients is conducted through unsupervised machine learning, referred to as the Wasserstein generative adversarial network-gradient penalty (WGAN-GP). By using a deep convolutional neural network, WGAN-GP stabilizes the interpolation across the parameters and ensures an accurate interpolation with few results within the parametric space. An interpolated object is then generated using the parametrically interpolated POD coefficients and relevant independent modes. Next, flow-fields around a stationary cylinder and a plunging airfoil are applied to demonstrate the efficiency and accuracy of the proposed approach, and the influences of the POD modes and parameters on the accuracy are evaluated. Finally, the accuracy and efficiency are compared with those of other methods through the adoption of an accuracy index. Based on the results, the proposed method was found to be effective and efficient for object interpolation. (C) 2021 TheAuthor(s). Published by ElsevierB.V.
机译:提出了一种改进的数据驱动非侵入式模型顺序(MOR)方法,其能够插入时间瞬态流场和关于参数的其他类型的数据。拟议的MOR方法包括以下两个阶段:MOR和插值。对于MOR,修改的适当正交分解(POD)用于收集参数独立的POD模式和相关系数。通过无监测的机器学习进行POD系数的插值,称为Wassersein生成对抗性网络梯度惩罚(Wan-GP)。通过使用深度卷积神经网络,WGAN-GP稳定参数的插值,并确保参数空间内的少量结果的准确插值。然后使用参数上插值的POD系数和相关的独立模式生成内插对象。接下来,应用围绕固定圆筒和浮动翼型的流场来证明所提出的方法的效率和准确性,并且评估了POD模式和参数对精度的影响。最后,通过采用精度指数与其他方法的准确性和效率进行比较。基于结果,发现该方法对对象插值有效和有效。 (c)2021 TheAuthor。由elsevierb.v发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号