首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components
【24h】

An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components

机译:用于短纤维增强塑料部件的多尺度分析的FE-DMN方法

获取原文
获取原文并翻译 | 示例

摘要

In this work, we propose a fully coupled multiscale strategy for components made from short fiber reinforced composites, where each Gauss point of the macroscopic finite element model is equipped with a deep material network (DMN) which covers the different fiber orientation states varying within the component. These DMNs need to be identified by linear elastic precomputations on representative volume elements, and serve as high-fidelity surrogates for full-field simulations on microstructures with inelastic constituents.We discuss how to extend direct DMNs to account for varying fiber orientation, and propose a simplified sampling strategy which significantly speeds up the training process. To enable concurrent multiscale simulations, evaluating the DMNs efficiently is crucial. We discuss dedicated techniques for exploiting sparsity and high-performance linear algebra modules, and demonstrate the power of the proposed approach on an injection molded quadcopter frame as a benchmark component. Indeed, the DMN is capable of accelerating two-scale simulations significantly, providing possible speed-ups of several magnitudes. (C) 2021 The Authors. Published by Elsevier B.V.
机译:在这项工作中,我们提出了一种全耦合的多尺度策略,用于由短纤维增强复合材料制成的部件,其中宏观有限元模型的每个高斯点配备有一个深层材料网络(DMN),该网络网络(DMN)覆盖不同的纤维方向状态。成分。这些DMNS需要通过代表体积元素的线性弹性预压制来识别,并用作具有无弹性成分的微观结构的全场模拟的高保真替代品。我们讨论如何延伸DMN以考虑不同的纤维方向,并提出一个简化的抽样策略,显着加快了培训过程。为了实现并发的多尺度模拟,有效地评估DMN是至关重要的。我们讨论了用于利用稀疏性和高性能线性代数模块的专用技术,并证明所提出的方法在注塑模型Quadcopter框架上作为基准组件的功率。实际上,DMN能够显着地加速两种模拟,从而提供几个大小的速度。 (c)2021作者。 elsevier b.v出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号