首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Bridging the gap between local and nonlocal numerical methods--A unified variational framework for non-ordinary state-based peridynamics
【24h】

Bridging the gap between local and nonlocal numerical methods--A unified variational framework for non-ordinary state-based peridynamics

机译:桥接局部和非局部数值方法之间的差距 - 一种非普通状态性表现的统一变分框架

获取原文
获取原文并翻译 | 示例

摘要

The paper aims to develop a unified variational framework to bridge the gap between the non-ordinary state-based peridynamics (NOSB-PD) and the classical continuum mechanics (CCM). First, a new force state vector is proposed by introducing the first Piola-Kirchhoff stress. This new force state vector enables the stress divergence of each material point to be expressed by averaging all the force state vectors in its support domain. The new force state vector also ensures the mathematical consistency between the strong form of PD and CCM when the horizon of a material point approaches to zero. Second, the displacement and traction boundaries in CCM are transformed into the non-local fictious boundary layers in PD, and a non-local Gauss's formulation is presented by transforming the displacement and traction boundaries in CCM into the non-local fictious boundary layers in PD, and this formulation unifies the variational framework and boundary conditions of PD and CCM. Third, a fully implicit algorithm is developed to obtain the general nonlinear problems such as fracture and large deformation of solid materials. Further, a penalty method is employed to eliminate the zero-energy mode oscillation inherently observed in NOSB-PD, and the penalty force and penalty stiffness matrix are derived for the proposed implicit algorithm and numerical implementation. Numerical results demonstrate that the proposed method is accurate and can well capture the fracture and large deformation of solid materials. Results also indicate that the method can effectively prevent the zero-mode oscillations inherently observed in the original NOSB-PD, and thus ensures the computational stability. (C) 2021 Elsevier B.V. All rights reserved.
机译:本文旨在开发统一的变分框架,以弥合非普通国家赤度动力学(NOSB-PD)与经典连续力学(CCM)之间的间隙。首先,通过引入第一Piola-kirchhoff应力来提出新的力状态向量。该新力状态向量使得通过在其支持域中的所有力状态向量中平均所有力状态向量来表达每个材料点的应力发散。新的力状态矢量还确保了当材料点的地平线接近零时的PD和CCM的强形式与CCM之间的数学一致性。其次,CCM中的位移和牵引边界被转变为PD中的非局部虚拟边界层,通过将CCM中的位移和牵引边界转换为PD中的非局部虚拟边界层来呈现非局部高斯的制剂,该配方统一了Pd和CCM的变分框架和边界条件。第三,开发了完全隐含的算法以获得一般的非线性问题,例如裂缝和固体材料的大变形。此外,采用惩罚方法来消除在NOSB-PD中固有地观察到的零能量模式振荡,并且导出了惩罚力和惩罚刚度矩阵用于所提出的隐式算法和数值实现。数值结果表明,所提出的方法是准确的,可以很好地捕获固体材料的断裂和大变形。结果还表明该方法可以有效地防止在原始NOSB-PD中固有地观察到的零模式振荡,从而确保计算稳定性。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号