首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Nitsche's method as a variational multiscale formulation and a resulting boundary layer fine-scale model
【24h】

Nitsche's method as a variational multiscale formulation and a resulting boundary layer fine-scale model

机译:NITSCHE作为变形式多尺度配方的方法和由此产生的边界层微尺模型

获取原文
获取原文并翻译 | 示例

摘要

We show that in the variational multiscale framework, the weak enforcement of essential boundary conditions via Nitsche's method corresponds directly to a particular choice of projection operator. The consistency, symmetry and penalty terms of Nitsche's method all originate from the fine-scale closure dictated by the corresponding scale decomposition. As a result of this formalism, we are able to determine the exact fine-scale contributions in Nitsche-type formulations. In the context of the advection-diffusion equation, we develop a residual-based model that incorporates the non-vanishing fine scales at the Dirichlet boundaries. This results in an additional boundary term with a new model parameter. We then propose a parameter estimation strategy for all parameters involved that is also consistent for higher-order basis functions. We illustrate with numerical experiments that our new augmented model mitigates the overly diffusive behavior that the classical residual-based fine-scale model exhibits in boundary layers at boundaries with weakly enforced essential conditions. (C) 2021 Elsevier B.V. All rights reserved.
机译:我们认为,在变分式多尺度框架中,通过NITSCHE方法的基本边界条件的弱势执行直接对投影运算符的特定选择。 NITSCHE方法的一致性,对称性和惩罚条款源于相应的比例分解的细尺闭合。由于这种形式主义,我们能够确定Nitsche型制剂中的确切精细贡献。在逆转扩散方程的上下文中,我们开发一种基于残留的模型,该模型包括在Dirichlet边界处的非消失的细刻度。这导致具有新模型参数的附加边界术语。然后,我们为涉及的所有参数提出了一个参数估计策略,其也一致地为高阶基函数。我们用数值实验说明了我们的新增强模型减轻了过度扩散的行为,即经典残余的微级模型在边界层中展出的横向强制基本条件。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号