首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Prediction and identification of physical systems by means of Physically-Guided Neural Networks with meaningful internal layers
【24h】

Prediction and identification of physical systems by means of Physically-Guided Neural Networks with meaningful internal layers

机译:通过物理引导的神经网络与有意义的内部层的预测与识别物理系统

获取原文
获取原文并翻译 | 示例

摘要

Substitution of well-grounded theoretical models by data-driven predictions is not as simple in engineering and sciences as it is in social and economic fields. Scientific problems suffer many times from paucity of data, while they may involve a large number of variables and parameters that interact in complex and non-stationary ways, obeying certain physical laws. Moreover, a physically-based model is not only useful for making predictions, but to gain knowledge by the interpretation of its structure, parameters, and mathematical properties. The solution to these shortcomings seems to be the seamless blending of the tremendous predictive power of the data-driven approach with the scientific consistency and interpretability of physically-based models. We use here the concept of Physically-Guided Neural Networks (PGNN) to predict the input-output relation in a physical system, while, at the same time, fulfilling the physical constraints. With this goal, the internal hidden state variables of the system are associated with a set of internal neuron layers, whose values are constrained by known physical relations, as well as any additional knowledge on the system. Furthermore, when having enough data, it is possible to infer knowledge about the internal structure of the system and, if parameterized, to predict the state parameters for a particular input-output relation. We show that this approach, besides getting physically-based predictions, accelerates the training process, reduces the amount of data required to get similar accuracy, partly filters the intrinsic noise in the experimental data and improves its extrapolation capacity. (C) 2021 ElsevierB.V. All rights reserved.
机译:通过数据驱动的预测替换良好的理论模型并不是社会和经济领域的工程和科学中的简单。科学问题遭受了许多数据的次数遭受了多次,而他们可能涉及大量变量和参数以复杂和非稳定性方式互动,遵循某些物理法律。此外,基于物理基于的模型不仅用于制定预测,而且通过解释其结构,参数和数学属性来获得知识。这些缺点的解决方案似乎是数据驱动方法的巨大预测力的无缝化混合,具有基于物理模型的科学稠度和可解释性。我们在这里使用物理引导的神经网络(PGNN)的概念来预测物理系统中的输入输出关系,同时满足物理约束。通过这种目标,系统的内部隐藏状态变量与一组内部神经元层相关联,其值由已知的物理关系约束,以及系统上的任何其他知识。此外,当具有足够的数据时,可以推断关于系统的内部结构的知识,并且如果参数化,则可以预测特定输入输出关系的状态参数。我们表明这种方法除了获得物理基础的预测,加速训练过程,减少了获得相似精度所需的数据量,部分地过滤了实验数据中的内在噪声并提高了其外推容量。 (c)2021 elsevierb.v。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号