首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Conditional reliability analysis in high dimensions based on controlled mixture importance sampling and information reuse
【24h】

Conditional reliability analysis in high dimensions based on controlled mixture importance sampling and information reuse

机译:基于受控混合的高尺寸的条件可靠性分析,基于受控混合的重要性抽样和信息重用

获取原文
获取原文并翻译 | 示例

摘要

In many contexts, it is of interest to assess the impact of selected parameters on the failure probability of a physical system. To this end, one can perform conditional reliability analysis, in which the probability of failure becomes a function of these parameters. Computing conditional reliability requires recomputing failure probabilities for a sample sequence of the parameters, which strongly increases the already high computational cost of conventional reliability analysis. We alleviate these costs by reusing information from previous reliability computations in each subsequent reliability analysis of the sequence. The method is designed using two variants of importance sampling and performs information transfer by reusing importance densities from previous reliability analyses in the current one. We put forward a criterion for selecting the most informative importance densities, which is robust with respect to the input space dimension, and use a recently proposed density mixture model for constructing effective importance densities in high dimensions. The method controls the estimator coefficient of variation to achieve a prescribed accuracy. We demonstrate its performance by means of two engineering examples featuring a number of pitfall features such as strong non-linearity, high dimensionality and small failure probabilities (10(-5) to 10(-9)). (C) 2021 Elsevier B.V. All rights reserved.
机译:在许多情况下,评估所选参数对物理系统的失败概率的影响是有意义的。为此,可以执行条件可靠性分析,其中失败的概率成为这些参数的函数。计算条件可靠性需要对参数的样本序列进行重新计算的故障概率,这强烈增加了传统可靠性分析的高计算成本。我们通过在序列的每个后续可靠性分析中重用来自先前可靠性计算的信息来缓解这些成本。该方法是使用重要性采样的两个变体设计的,并通过重用来自当前的可靠性分析的重要性密度来执行信息传输。我们提出了一种选择最具信息性的重要性密度,其对输入空间尺寸具有鲁棒性,并且使用最近提出的密度混合模型来构建高维度的有效重视密度。该方法控制估计器变异系数以实现规定的精度。我们通过两种工程示例展示其性能,其中包括许多陷阱特征,例如强的非线性,高维度和小故障概率(10(-5)至10(-9))。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号