首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >RI-IGABEM for 2D viscoelastic problems and its application to solid propellant grains
【24h】

RI-IGABEM for 2D viscoelastic problems and its application to solid propellant grains

机译:RI-IGABEM用于2D粘弹性问题及其在固体推进剂颗粒中的应用

获取原文
获取原文并翻译 | 示例

摘要

The isogeometric boundary element method (IGABEM) has a broad application prospect due to its exact geometric representation, excellent field approximation and only boundary discretization property. In this paper, IGABEM based on radial integration method (RI-IGABEM) is used for viscoelastic analysis of solid propellant grain. The memory stress, as the initial stress, leads to the boundary-domain integral equations and thus eliminates the only boundary discretization advantage of boundary element method (BEM). The radial integration method (RIM) is applied to transform the domain integral into an equivalent boundary integral by means of the applied points. The usage of RIM makes it possible to only store the strains on the applied points. Meanwhile, Prony-series is used to discretize the general integrals and to store the two most recent time-step strains rather than the time-step strains of the entire process. The combination between RIM and Prony-series will help reduce the storage space and computational time. In addition, by using the fundamental solutions for linear elastic problems and the regularized technologies, the singular integrals can be solved through the previous methods, such as the Telles scheme and element sub-division method. In order to validate the accuracy and robustness of RI-IGABEM in viscoelastic analysis, the influence of the number and position of applied points as well as the time interval on viscoelastic analysis is discussed through comparing with cell discretization methods. A set of numerical examples demonstrates the ability of the scheme to simulate the viscoelastic problems. ?c & nbsp; 2021 Elsevier B.V. All rights reserved.commentSuperscript/Subscript Available/comment
机译:ISogeometric边界元法(IGABEM)由于其精确的几何表示,优异的场近似和边界离散化属性而具有广泛的应用前景。本文基于径向整合法(Ri-Igabem)的Igabem用于固体推进剂粒的粘弹性分析。作为初始应力的存储器应力导致边界域积分方程,因此消除了边界元方法(BEM)的唯一边界离散化优点。施加径向积分法(RIM)以通过所应用的点将域积分变成到等同边界积分。边缘的使用使得可以仅将菌株存放在所应用的点上。同时,PRONY系列用于离散一般积分并存储两个最近的时间阶段菌株而不是整个过程的时间步骤队伍。轮辋和Proy系列之间的组合将有助于降低存储空间和计算时间。此外,通过使用线性弹性问题的基本解决方案和正则化技术,可以通过先前的方法来解决奇异积分,例如讲述方案和元素子分割方法。为了验证Ri-Igabem在粘弹性分析中的准确性和稳健性,通过与细胞离散化方法相比,讨论了所施加点数量和位置的影响以及粘弹性分析的时间间隔。一组数值示例证明了方案模拟粘弹性问题的能力。 ?C&NBSP; 2021 elestvier b.v.保留所有权利。<注释>上标/下标可用

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号