...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Topology optimization of hyperelastic structures with anisotropic fiber reinforcement under large deformations
【24h】

Topology optimization of hyperelastic structures with anisotropic fiber reinforcement under large deformations

机译:大变形下各向异性纤维增强材料的拓扑结构优化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Fiber-reinforced soft materials have emerged as promising candidates in various applications such as soft robotics and soft fibrous tissues. To enable a systematic approach to design fiber-reinforced materials and structures, we propose a general topology optimization framework for the computational optimized design of hyperelastic structures with nonlinear and anisotropic fiber reinforcements under large deformations. This framework simultaneously optimizes both the material distribution in the matrix phase and the orientations of the underlying fiber reinforcements, by parameterizing matrix and fiber phases individually using two sets of design variables. The optimized distribution of fiber orientations is chosen from a set of discrete orientations defined a priori, and several fiber orientation interpolation schemes are studied. In addition, this work proposes a novel anisotropic material interpolation scheme, which integrates both matrix and fiber design variables (both with material nonlinearity) into the stored-energy function. To improve the computational efficiency of both optimization and nonlinear structural analysis, we derive a fully decoupled fiber-matrix update scheme that performs parallel updates of the matrix and fiber design variables and employ the virtual element method (VEM) together with a tailored mesh adaptivity scheme to solve the finite elasticity boundary value problem. Design examples involving three objective functions are presented, demonstrating the efficiency and effectiveness of the proposed framework in designing anisotropic hyperelastic structures under large deformations. (C) 2020 Elsevier B.V. All rights reserved.
机译:纤维增强的软材料是各种应用中有前途的候选者,如软机器人和软纤维组织。为了使系统方法能够设计纤维增强材料和结构,我们提出了一种通用拓扑优化框架,用于在大变形下具有非线性和各向异性纤维增强的超弹性结构的计算优化设计。该框架通过使用两组设计变量单独参数化矩阵和光纤相同时优化矩阵阶段的材料分布和底层光纤增强件的方向。纤维取向的优化分布选自定义先验的一组离散取向,并研究了几种光纤方向插值方案。此外,这项工作提出了一种新的各向异性材料插值方案,其将矩阵和光纤设计变量(两者都与材料非线性)集成到存储能量功能中。为了提高优化和非线性结构分析的计算效率,我们推出了完全解耦的光纤矩阵更新方案,该矩阵更新方案执行矩阵和光纤设计变量的并行更新,并采用虚拟元素方法(VEM)以及量身定制的网格适应性方案解决有限弹性边值问题。提出了涉及三个客观功能的设计示例,展示了在大变形下设计各向异性超弹性结构的提出框架的效率和有效性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号