首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Invariant isogeometric formulation for the geometric stiffness matrix of spatial curved Kirchhoff rods
【24h】

Invariant isogeometric formulation for the geometric stiffness matrix of spatial curved Kirchhoff rods

机译:用于空间弯曲Kirchhoff棒的几何刚度矩阵的不变的异诊法式

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an invariant isogeometric formulation for the geometric stiffness matrix of spatial curved Kirchhoff rods considering various end moments, i.e., the internal (member) moments and applied (conservative) moments. There are two levels of rigid-body qualification, one is on the buckling theory of the rod itself and the other on the isogeometric formulation for discretization. Both will be illustrated. Based on the updated Lagrangian formulation of three-dimensional continua, the rotational effect of end moments is naturally included in the external virtual work done by end tractions without introducing any definition of finite rotations. Both the geometric torsion and curvatures of the rod are considered closely for the centroidal axis, except with the omission of higher order terms. The geometric stiffness matrix for internal moments is consistent with that of the geometrically exact rod model with its rigid-body quality demonstrated. For structures rigorously defined for the deformed state, the geometric stiffness matrix after global assembly is always symmetric, for both the internal and external moments. By adopting the invariant isogeometric discretization following our previous work, a series of numerical examples, including the cases of external conservative moments, angled joint and complicated spatial geometry, were solved for buckling analysis, by which the reliability of the geometric stiffness matrix derived is verified via comparison with the analytical or straight beam solutions. (C) 2021 Elsevier B.V. All rights reserved.
机译:本文介绍了考虑各种末端矩,即内部(成员)时刻和应用(保守)时刻的空间弯曲Kirchhoff棒的几何刚度矩阵的不变的异晶矩阵。有两种级别的刚体鉴定,一个是杆本身的屈曲理论,另一个是在异诊制品上进行离散化。两个都将被说明。基于更新的拉格朗日配方的三维连续体,最终瞬间的旋转效果自然包括在终端诉讼中完成的外部虚拟工作中,而不引入有限旋转的任何定义。除了遗漏高阶术语之外,杆的几何扭转和曲率都被仔细考虑了尺寸。用于内部矩的几何刚度矩阵与具有其刚性体质量的几何精确杆模型的形状符合。对于为变形状态严格地定义的结构,全局组装后的几何刚度矩阵始终是对称的,用于内部和外部时刻。通过采用先前的工作之后的不变的异步离散化,解决了一系列数值示例,包括外部保守矩,成角度的关节和复杂的空间几何形状,用于屈曲分析,通过该衍生的几何刚度矩阵的可靠性被验证通过与分析或直梁解决方案的比较。 (c)2021 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号