首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Non-convolutional second-order complex-frequency-shifted perfectly matched layers for transient elastic wave propagation
【24h】

Non-convolutional second-order complex-frequency-shifted perfectly matched layers for transient elastic wave propagation

机译:非卷积二阶复合频率移位完美匹配的瞬态弹性波传播层

获取原文
获取原文并翻译 | 示例

摘要

The numerical simulation of wave propagation in heterogeneous unbounded media using domain discretization techniques requires truncation of the physical domain: at the truncation boundary, Perfectly Matched Layers (PMLs) - buffers wherein wave attenuation is imposed - are often used to mimic outgoing wave motion and prevent waves from re-entering the interior computational domain. The PML's wave-dissipative properties derive from a coordinate mapping concept, where the physical coordinate is mapped onto a frequency-dependent complex coordinate in the PML via a complex stretching function. The choice of the stretching function controls not only the spectral character and the absorptive properties of the PML, but also, more critically, the long-time stability when the computational domain-PML ensemble is used for transient wave simulations.The standard PML stretching function can lead to error growth, particularly when propagating waves impinge at grazing incidence on the truncation boundary. By contrast, a modification to the standard stretching function that has led to the Complex-Frequency-Shifted CFS-PML has been shown to alleviate the temporal instability. However, whereas PML formulations using the standard stretching function can lead to second-order in time semi-discrete forms, affording multifaceted benefits, all CFS-PML formulations to date require the evaluation of convolutions. In this paper, we discuss a new CFS-PML formulation that avoids the evaluation of convolutions, while preserving the second-order temporal character of elastic waves. It is shown that, upon spatial discretization, the CFS-PML can be completely described by a triad of stiffness, damping, and mass matrices, which can be readily incorporated into existing finite element codes originally designed for interior problems, to endow them with wave simulation capabilities on unbounded domains. Numerical experiments in the time-domain demonstrate the efficacy of the proposed approach; we also report long-time stability for problems involving waveguides and grazing wave incidence. (C) 2021 Elsevier B.V. All rights reserved.
机译:使用域离散化技术的异构无界介质中波传播的数值模拟需要截断物理域:在截断边界,完美匹配的层(PMLS) - 缓冲器,其中施加波衰减 - 通常用于模拟输出波运动并防止从重新进入内部计算域的波浪。 PML的波浪耗散特性从坐标映射概念导出,其中物理坐标通过复杂的拉伸函数映射到PML中的频率相关的复合坐标。延伸功能的选择不仅控制了PML的光谱特征和吸收性,而且更为疑问地,当计算域-PML合奏用于瞬态波模拟时的长时间稳定性。标准PML拉伸功能可以导致误差增长,特别是当传播波在截断边界上撞击放牧发动时。相比之下,已经示出了对已经导致复频移位的CFS-PML的标准拉伸函数的修改,已经示出了缓解时间不稳定性。然而,而使用标准拉伸功能的PML配方可以以第二顺序的半离散形式导致二阶,这是迄今为止的所有CFS-PML配方,所以所有CFS-PML配方都需要评估卷积。在本文中,我们讨论了一种新的CFS-PML配方,避免了卷曲的评估,同时保留弹性波的二阶时间特征。示出,在空间离散化时,CFS-PML可以通过三合一的刚度,阻尼和质量矩阵完全描述,该刚度,阻尼和大规模矩阵可以容易地纳入最初设计用于内部问题的现有有限元代码,以赋予它们波浪在无限域上的仿真功能。时域的数值实验证明了所提出的方法的功效;我们还报告了涉及波导和放牧发病率的问题的长期稳定性。 (c)2021 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号