首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Sparse identification of nonlinear dynamical systems via reweighted ℓ_1-regularized least squares
【24h】

Sparse identification of nonlinear dynamical systems via reweighted ℓ_1-regularized least squares

机译:通过重新免除ℓ_1-正规化最小二乘法的非线性动力系统稀疏识别

获取原文
获取原文并翻译 | 示例

摘要

This work proposes an iterative sparse-regularized regression method to recover governing equations of nonlinear dynamical systems from noisy state measurements. The method is inspired by the Sparse Identification of Nonlinear Dynamics (SINDy) approach of Brunton et al. (2016), which relies on two main assumptions: the state variables are known a priori and the governing equations lend themselves to sparse, linear expansions in a (nonlinear) basis of the state variables. The aim of this work is to improve the accuracy and robustness of SINDy in the presence of state measurement noise. To this end, a reweighted l(1)-regularized least squares solver is developed, wherein the regularization parameter is selected from the corner point of a Pareto curve. The idea behind using weighted l(1)-norm for regularization - instead of the standard l(1)-norm - is to better promote sparsity in the recovery of the governing equations and, in turn, mitigate the effect of noise in the state variables. We also present a method to recover single physical constraints from state measurements. Through several examples of well-known nonlinear dynamical systems, we demonstrate empirically the accuracy and robustness of the reweighted l(1)-regularized least squares strategy with respect to state measurement noise, thus illustrating its viability for a wide range of potential applications. (C) 2020 Elsevier B.V. All rights reserved.
机译:该工作提出了一种迭代稀疏正规化的回归方法,以从嘈杂的状态测量中恢复非线性动力系统的控制方程。该方法是通过Brunton等人的非线性动力学(Sindy)方法的稀疏识别启发。 (2016),依赖于两个主要假设:已知先验状态变量,并且控制方程在状态变量的(非线性)基础上赋予稀疏,线性扩展。这项工作的目的是在存在状态测量噪声的情况下提高Sindy的准确性和稳健性。为此,开发了重新重量的L(1) - 重新制定的最小二乘求解器,其中从Pareto曲线的角点中选择正则化参数。使用加权L(1)-NORM后面的想法进行正则化 - 而不是标准L(1)-NORM - 是为了更好地促进在控制方程的恢复时促进稀疏性,反过来减轻噪声在状态下的影响变量。我们还提出了一种从状态测量恢复单个物理约束的方法。通过众所周知的非线性动力系统的几个例子,我们经验证明了重复的L(1)-Regular化最小二乘策略关于状态测量噪声的精度和鲁棒性,从而说明其用于广泛潜在应用的可行性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号