首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Deep-learning-based surrogate flow modeling and geological parameterization for data assimilation in 3D subsurface flow
【24h】

Deep-learning-based surrogate flow modeling and geological parameterization for data assimilation in 3D subsurface flow

机译:基于深度学习的代理流量模型与地质参数,3D地下流动中的数据同化

获取原文
获取原文并翻译 | 示例

摘要

Data assimilation in subsurface flow systems is challenging due to the large number of flow simulations often required, and by the need to preserve geological realism in the calibrated (posterior) models. In this work we present a deep-learning-based surrogate model for two-phase flow in 3D subsurface formations. This surrogate model, a 3D recurrent residual U-Net (referred to as recurrent R-U-Net), consists of 3D convolutional and recurrent (convLSTM) neural networks, designed to capture the spatial-temporal information associated with dynamic subsurface flow systems. A CNN-PCA procedure (convolutional neural network post-processing of principal component analysis) for parameterizing complex 3D geomodels is also described. This approach represents a simplified version of a recently developed supervised-learning-based CNN-PCA framework. The recurrent R-U-Net is trained on the simulated dynamic 3D saturation and pressure fields for a set of random 'channelized' geomodels (generated using 3D CNN-PCA). Detailed flow predictions demonstrate that the recurrent R-U-Net surrogate model provides accurate results for dynamic states and well responses for new geological realizations, along with accurate flow statistics for an ensemble of new geomodels. The 3D recurrent R-U-Net and CNN-PCA procedures are then used in combination for a challenging data assimilation problem involving a channelized system. Two different algorithms, namely rejection sampling and an ensemble-based method, are successfully applied. The overall methodology described in this paper may enable the assessment and refinement of data assimilation procedures for a range of realistic and challenging subsurface flow problems. (C) 2020 Elsevier B.V. All rights reserved.
机译:由于经常需要大量的流量模拟,并且需要维护校准(后部)模型的地质现实,因此在地下流动系统中的数据同化是具有挑战性的。在这项工作中,我们介绍了一种基于深度学习的替代模型,用于3D地下地层的两相流。该替代模型,3D反复性残留U-Net(称为反复间R-U-Net),由3D卷积和反复(ConvlStm)神经网络组成,旨在捕获与动态地下流动系统相关的空间时间信息。还描述了用于参数化复杂3D GeomoDels的CNN-PCA程序(主成分分析的卷积神经网络处理)。该方法代表了最近开发的监督学习的CNN-PCA框架的简化版本。经常性R-U-Net在模拟动态3D饱和度和压力场上培训,用于一组随机的“通道化”地理典(使用3D CNN-PCA生成)。详细的流程预测表明,经常性R-U-Net代理模型为新地质典礼提供了新的地质信息的动态状态和良好响应,提供了准确的结果,以及新的地理典礼的精确流动统计数据。然后,3D复发性R-U-Net和CNN-PCA程序组合使用涉及信道化系统的具有挑战性的数据同化问题。成功应用了两种不同的算法,即抑制采样和基于集合的方法。本文中描述的整体方法可以为一系列现实和具有挑战性的地下流动问题进行评估和改进数据同化程序。 (c)2020 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号