首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A nearly-conservative, high-order, forward Lagrange-Galerkin method for the resolution of scalar hyperbolic conservation laws
【24h】

A nearly-conservative, high-order, forward Lagrange-Galerkin method for the resolution of scalar hyperbolic conservation laws

机译:一种近乎保守,高阶,前进的拉格朗日 - Galerky-Galerkin方法,用于分辨标量的双曲线保护法

获取原文
获取原文并翻译 | 示例

摘要

In this work, we present a novel Lagrange-Galerkin method for the resolution of scalar hyperbolic conservation laws. The scheme considers: (i) a conservative, weak, Lagrangian formulation which is formally discretized in space and in time with arbitrary order of accuracy, (ii) a forward-in-time integration of the fluid trajectories to allow for more stable and efficient time discretizations, (iii) nodal space-discretizations on unstructured triangular meshes and (iv) a novel and simple operator which employs the values of the fine-scale term of the solution to detect and capture the discontinuities. The method has been tested on several benchmark problems -including a hard case of non-convex flux- using a third-order time-integration formula and up to fourth-order finite elements, yielding the expected convergence rates both for smooth and discontinuous solutions. To the best of our knowledge, this is the first Lagrange-Galerkin method for hyperbolic conservation laws in the literature that allows for discontinuous solutions. (C) 2020 Elsevier B.V. All rights reserved.
机译:在这项工作中,我们提出了一种新颖的Lagrange-Galerkin方法,用于解决标量双曲守恒法。该计划考虑:(i)保守,弱,拉格朗日制剂,其在空间和时间内正式地分离,并随着任意的准确顺序,(ii)流体轨迹的前进时间整合,以便更稳定和高效时间离散化,(iii)非结构化三角网格网和(iv)的节点空间离散化,一种新颖的和简单的操作员,其采用解决方案的微级术语值来检测和捕获不连续性。该方法已经在几个基准问题上进行了测试 - 仅使用三阶时间集成公式和最多四阶的有限元件,从而使用三阶时间集成公式的硬壳,从而产生用于平滑和不连续的解决方案的预期会聚速率。据我们所知,这是第一个用于允许不连续解决方案的文献中的双曲守恒法的Lagrange-Galerkin方法。 (c)2020 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号