首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Multisymplectic Galerkin Lie group variational integrators for geometrically exact beam dynamics based on unit dual quaternion interpolation - no shear locking
【24h】

Multisymplectic Galerkin Lie group variational integrators for geometrically exact beam dynamics based on unit dual quaternion interpolation - no shear locking

机译:基于单元双季度插值的几何精确光束动力学,多双反对派Galerkin Lie组变分积分器 - 没有剪切锁定

获取原文
获取原文并翻译 | 示例

摘要

We present a Galerkin multisymplectic Lie group variational integrator. It is suitable for dynamical systems defined on a two dimensional space-time and the integrator allows arbitrary convergence orders independently for both dimensions. As an example we use geometrically exact beam dynamics where a slender structure is modelled as a centre line with a cross section at every point. The Lie group in question is the special Euclidean group in three-dimensional space, SE(3), which we parametrize using unit dual quaternions. This allows a very simple and efficient interpolation method to be used, which additionally prevents shear locking present in more naive discretizations of geometrically exact beams. (C) 2020 Elsevier B.Y. All rights reserved.
机译:我们介绍了一个Galerkin多双反对派谎言组变分积分器。它适用于在二维时空上定义的动态系统,积分器允许为两个尺寸独立地达到任意收敛率。作为一个例子,我们使用几何精确光束动态,其中纤维结构被建模为中心线,每个点处具有横截面。有问题的谎言组是三维空间,SE(3)中的特殊欧几里德集团,我们使用单位双季度参加参数化。这允许使用非常简单且有效的内插方法,其另外防止在几何精确光束的更幼稚的离散化中存在剪切锁定。 (c)2020 Elsevier B.Y.版权所有。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号