首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A conservative level set method on unstructured meshes for modeling multiphase thermo-fluid flow in additive manufacturing processes
【24h】

A conservative level set method on unstructured meshes for modeling multiphase thermo-fluid flow in additive manufacturing processes

机译:非结构化网格的保守水平集方法,用于建模加性制造过程中的多相热流体流动

获取原文
获取原文并翻译 | 示例

摘要

Additive manufacturing (AM) is an emerging technology that fuses deposited powder materials together layer-by-layer using a localized heat source to create an arbitrarily complex geometry. This technology is an inherently multiphysics problem, involving the simultaneous evolution of fluid flow, heat transfer, free surface, laser-material interaction and material phases including solid, liquid and gas. Multiphysics and multiphase models are typically used to understand the dominant physics driving AM processes through high fidelity simulations resolving the individual powders as they melt onto the substrate. However, these types of high fidelity models have not been applicable to modeling directed energy deposition (DED) process, where powders are delivered through the ambient vapor onto the substrate by a nozzle and subsequently fused. This paper presents a novel multiphase thermo-fluid formulation for modeling DED processes. A diffuse level set formulation coupled with the Navier-Stokes, energy conservation and radiative transport equation allows us to model complex free surface, fluid flow, thermal and laser interaction evolution. In addition, our formulation enables us to resolve the vapor flow field and its effect on deposited material during AM processes. The accuracy of our proposed method is assessed by comparing with literature solutions and experimental benchmarks. Our proposed formulation is then used to model simple DED processes that enable us to visualize the entrainment of powder particles into the melt pool. This process elucidates the dominant physical forces that can drive powders into the melt pool as well as their effect on the melt pool evolution within DED processes. (C) 2020 Elsevier B.V. All rights reserved.
机译:添加剂制造(AM)是一种新兴技术,其使用局部热源将逐层沉积在一起熔化沉积的粉末材料,以产生任意复杂的几何形状。该技术是一种固有的多体问题,涉及流体流动,传热,自由表面,激光材料相互作用和材料相的同时演变,包括固体,液体和气体。多体学和多相模型通常用于了解通过高保真模拟驱动AM过程的主导物理学,在它们熔化到基板上时拆分单独的粉末。然而,这些类型的高保真模型尚未适用于建模定向能量沉积(DED)工艺,其中粉末通过喷嘴通过环境蒸汽输送到基板上并随后熔融。本文介绍了一种用于建模DED工艺的多相热流体配方。与Navier-Stokes,节能和辐射传输方程联接的漫射水平集合配方允许我们建模复杂的自由表面,流体流动,热和激光相互作用演化。此外,我们的配方使我们能够在AM过程中解析蒸汽流场及其对沉积材料的影响。通过与文献解决方案和实验基准进行比较来评估我们提出的方法的准确性。然后,我们提出的配方用于模拟简单的DED过程,使我们能够将粉末颗粒的夹带形式化到熔池中。该方法阐明了可以将粉末驱动到熔池中的主要物理力以及它们对DED工艺中的熔体池进化的影响。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号