...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >DEM and dual-probability-Brownian motion scheme for thermal conductivity of multiphase granular materials with densely packed non-spherical particles and soft interphase networks
【24h】

DEM and dual-probability-Brownian motion scheme for thermal conductivity of multiphase granular materials with densely packed non-spherical particles and soft interphase networks

机译:具有密集包装非球形颗粒和软间网络的多相粒状材料的热导率的DEM和双概率 - 褐色运动方案

获取原文
获取原文并翻译 | 示例
           

摘要

Shape-anisotropic granules and their surrounding interphase networks are significant constituents in granular materials. Structural and physical configurations of these constituents significantly affect the overall thermal performance of granular materials, specifically microstructure-dependent thermal conductive properties. It has been a key but unresolved issue how to quantitatively understand the microstructure evolution of conductive interphase interacted by densely packed non-spherical particles triggering the change of thermal conductivity of granular materials. In this work, we devise a powerful scheme by using the discrete element method (DEM) and the dual-probability-Brownian motion simulation (DP-BMS) to accurately and efficiently predict the effective thermal conductivity of granular materials composed of homogeneous matrix, conductive (soft) interphase around randomly-dispersed elliptical particles over a broad range of aspect ratios with widespread applications, such as cracks, pores, fibers, cellulose whiskers, silicate nanorods, and aggregates. Comparison against extensive numerical and theoretical data validates that such the scheme can well predict the effective thermal conductivity of multiphase granular materials with densely packed non-spherical particles that is just the intrinsic limitation of the classical micromechanical homogenization theories. In this scheme, the DEM provides a direct means of investigating the time-dependent microstructure evolution of granular materials with elliptical particles from a loose parking state to a dense packing state. The DP-BMS provides an effective technique for predicting the effective thermal conductive transport properties of multiphase granular materials. By comparing with traditional numerical strategies like the finite element method (FEM) and random walk model (RWM), the DP-BMS is more user-friendly and efficient to accurately predict the effective thermal conductivity. This scheme can be regarded as a general procedure that is readily applicable to predictions of other transport properties of two-dimensional or three-dimensional multiphase granular materials. Furthermore, we use the scheme to probe the influences of the shape and high packing density of particles and the thickness and fraction of soft interphase on the effective thermal conductivity of granular materials. The results elucidate rigorous component-structure-property relations, which can provide sound guidance for composite design and microstructure optimization. (C) 2020 Elsevier B.V. All rights reserved.
机译:形状各向异性颗粒及其周围的间间网络是颗粒材料中的重要成分。这些成分的结构和物理配置显着影响粒状材料的总热性能,特别是微观结构依赖性的导热性能。它是一种关键但未解决的问题如何定量地理解通过密集包装的非球形颗粒触发粒状材料导热率的变化而相互作用的导电间晶体的微观结构演变。在这项工作中,我们通过使用离散元素方法(DEM)和双概率 - 褐色运动模拟(DP-BMS)来精确有效地预测由均匀基质组成的粒状材料的有效导热性的强大方案(软)在随机分散的椭圆颗粒周围与广泛的纵横比,具有广泛的应用,例如裂缝,孔,纤维,纤维素晶须,硅酸盐纳米棒和聚集体。与广泛的数值和理论数据进行比较验证,这种方案可以很好地预测多相粒状材料的有效导热性,其具有密集包装的非球形颗粒,这只是经典微机械均匀化理论的内在局限性。在该方案中,DEM提供调查从松散停车状态与椭圆形颗粒粒状物的时间依赖性组织演变至密集包装状态的直接手段。 DP-BMS提供了一种用于预测多相粒状材料的有效导热性传输性能的有效技术。通过与有限元方法(FEM)和随机步道模型(RWM)等传统的数值策略进行比较,DP-BMS更用户友好且有效,以准确地预测有效的导热率。该方案可以被认为是一种通用程序,该方法很容易应用于预测二维或三维多相材料颗粒材料的其他传输性质。此外,我们使用该方案探测颗粒的形状和高填充密度的影响和软间厚度和厚度和分数对粒状材料的有效导热率。结果阐明了严格的部件 - 结构性质关系,可以为复合设计和微观结构优化提供声音指导。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号