首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A unified water/ice kinematics approach for phase-field thermo-hydro-mechanical modeling of frost action in porous media
【24h】

A unified water/ice kinematics approach for phase-field thermo-hydro-mechanical modeling of frost action in porous media

机译:多孔介质霜球作用相磁场热水机械建模的统一水/冰通风型方法

获取原文
获取原文并翻译 | 示例

摘要

This research work introduces a novel phase-field thermo-hydro-mechanical (P-THM) modeling approach that allows to deeply understand and model the freezing-thawing cyclic process in a fluid-saturated porous medium. In this, a biphasic macroscopic, non-isothermal porous media model, augmented by the phase-field method (PFM), is applied to account for the temperature development, the interstitial pore-fluid flow, and the volumetric deformations due to ice formation (phase change). Utilizing the theory of porous media (TPM) in the continuum mechanical formulation provides a well-founded basis for the description of deformable, fluid-saturated, non-isothermal porous solid materials. Of particular importance in the underlying work is the unified kinematics treatment of the ice and water constituents as a single pore-fluid, where the PFM is employed for the description of the phase transition between both constituents. The PFM is a diffuse-interface approach that relies on the specification of the free energy density function as the main driving force in the phase transition. It employs a scalar-valued, phase-field variable to indicate the state of the pore-fluid, i.e., a solid (ice) or a liquid (water). A significant virtue of using the PFM approach is its viability in the implementation within standard finite element frameworks, as no need to explicitly track the moving boundaries (interfaces) of the phase-change constituent. The numerical examples and comparisons presented at the end of the manuscript demonstrate the ability, reliability and usefulness of the proposed modeling framework in describing the freezing-thawing process in a saturated porous solid under thermal loading within an elastic deformation limit. (c) 2020 Elsevier B.V. All rights reserved.
机译:该研究工作介绍了一种新型的相域热 - 水力 - 机械(P-THM)建模方法,其允许深入理解并模拟流体饱和多孔介质中的冰冻循环过程。在此,通过相位现场方法(PFM)增强的双相宏观,非等温多孔介质模型被应用于考虑温度显影,间质孔隙流体流动和由于冰形成而导致的体积变形(相变)。利用连续内的多孔介质(TPM)理论为可变形,流体饱和的非等温多孔固体材料的描述提供了良好的基础。在基础工作中特别重要的是冰和水成分作为单个孔隙流体的统一运动学处理,其中PFM用于描述两种成分之间的相转变。 PFM是一种漫反射界面方法,其依赖于自由能量密度函数的规格作为相位过渡中的主驱动力。它采用标量值的相场变量来指示孔隙流体的状态,即固体(冰)或液体(水)。使用PFM方法的重要性是其在标准有限元框架内的实现中的可行性,因为无需明确地跟踪相变组分的移动边界(接口)。在稿件结束时呈现的数值示例和比较证明了所提出的建模框架的能力,可靠性和有用性,以便在弹性变形极限内的热负荷下在热负荷下描述饱和多孔固体中的冻融过程。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号