首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A framework for efficient isogeometric computations of phase-field brittle fracture in multipatch shell structures
【24h】

A framework for efficient isogeometric computations of phase-field brittle fracture in multipatch shell structures

机译:多壳结构中相位脆性骨折的高效异构计算的框架

获取原文
获取原文并翻译 | 示例

摘要

We present a computational framework for applying the phase-field approach to brittle fracture efficiently to complex shell structures. The momentum and phase-field equations are solved in a staggered scheme using isogeometric Kirchhoff-Love shell analysis for the structural part and isogeometric secondand fourth-order phase-field formulations for the brittle fracture part. For the application to complex multipatch structures, we propose penalty formulations for imposing all the required interface constraints, i.e., displacement (C0) and rotational (C1) continuity for the structure as well as C0 and C1 continuity for the phase field, where the latter is required only in the case of the fourth-order phase-field model. All involved penalty terms are scaled with the corresponding problem parameters to ensure a consistent scaling of the penalty contributions to the global system of equations. As a consequence, all coupling terms are controlled by one global penalty parameter, which can be set to 103 independent of the problem parameters. Furthermore, we present a multistep predictor-corrector algorithm for adaptive local refinement with LR NURBS, which can accurately predict and refine the region around the crack even in cases where fracture fully develops in a single load step, such that rather coarse initial meshes can be used, which is essential especially for the application to large structures. Finally, we investigate and compare the numerical efficiency of loosely vs. strongly staggered solution schemes and of the secondvs. fourth-order phase-field models. (C) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
机译:我们提出了一种计算框架,用于将相位场方法有效地应用于复杂的壳结构的脆性断裂。使用ISogeometric Kirchhoff-Love壳分析,用于结构部件和异诊室外的四阶相域制剂,以交错方案求解动量和相位场方程。对于复杂多匹配结构的应用,我们提出了罚款制剂,用于施加所有所需的界面约束,即,对于该结构的旋转(C0)和旋转(C1)连续性以及相位字段的C0和C1连续性,其中包括后者仅在第四阶相场模型的情况下需要。所有涉及的惩罚术语都以相应的问题参数缩放,以确保对全球方程式的惩罚贡献一致的缩放。结果,所有耦合术语都由一个全局惩罚参数控制,该参数可以设置为103独立于问题参数。此外,我们展示了一种用于LR NURBS的自适应局部细化的多步骤预测器校正算法,即使在裂缝在单个负载步骤中完全发展的情况下,可以准确地预测和优化裂缝周围的区域,使得相当粗略的初始网格可以是使用,这对于大结构的应用是必不可少的。最后,我们调查并比较松散与强硬的解决方案方案和第二次的数值效率。四阶阶段场模型。 (c)2020提交人。由elsevier b.v发布。这是CC的开放访问文章,许可证(http://creativecommons.org/licenses/by/4.0/)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号