首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Consistent weak forms for meshfree methods: Full realization of h-refinement, p-refinement, and a-refinement in strong-type essential boundary condition enforcement
【24h】

Consistent weak forms for meshfree methods: Full realization of h-refinement, p-refinement, and a-refinement in strong-type essential boundary condition enforcement

机译:MeshFREE方法的一致弱形式:全面实现H-细化,P精炼和强大的基本边界条件执法中的一种细化

获取原文
获取原文并翻译 | 示例

摘要

Enforcement of essential boundary conditions in many Galerkin meshfree methods is non-trivial due to the fact that field variables are not guaranteed to coincide with their coefficients at nodal locations. A common approach to overcome this issue is to strongly enforce the boundary conditions at these points by employing a technique to modify the approximation such that this is possible. However, with these methods, test and trial functions do not strictly satisfy the requirements of the conventional weak formulation of the problem, as the desired imposed values can actually deviate between nodes on the boundary. In this work, it is first shown that this inconsistency results in the loss of Galerkin orthogonality and the best approximation property, and correspondingly, failure to pass the patch test. It is also shown that this induces an O(h) error in the energy norm in the solution of second-order boundary value problems that is independent of the order of completeness in the approximation. As a result, this places a barrier on the global order of accuracy of Galerkin meshfree solutions to that of linear consistency. That is, with these methods, it is not possible to attain the higher order accuracy offered by meshfree approximations in the solution of boundary-value problems. To remedy this deficiency, two new weak forms are introduced that relax the requirements on the test and trial functions in the traditional weak formulation. These are employed in conjunction with strong enforcement of essential boundary conditions at nodes, and several benchmark problems are solved to demonstrate that optimal accuracy and convergence rates associated with the order of approximation can be restored using the proposed method. In other words, this approach allows p-refinement, and h-refinement with pth order rates with strong enforcement of boundary conditions beyond linear (p 1) for the first time. In addition, a new concept termed a-refinement is introduced, where improved accuracy is obtained by increasing the kernel measure in meshfree approximations, previously unavailable. (C) 2020 Elsevier B.V. All rights reserved.
机译:由于不保证在节点位置处的系数与其系数不保证,因此许多Galerkin网格方法中的基本边界条件的实施是非琐碎的。克服这个问题的常见方法是通过采用一种技术来强烈强制执行这些点的边界条件来修改近似,使得这是可能的。然而,通过这些方法,测试和试验功能并不严格满足传统弱的问题的要求,因为所需的施加值实际上可以偏离边界上的节点。在这项工作中,首先表现出这种不一致导致Galerkin正交性和最佳近似属性的丧失,并且相应地失败,无法通过补丁测试。还示出了,这在二阶边值问题的解决方案中引起了能量规范中的o(h)误差,其与近似下的完整顺序无关。因此,这对Galerkin网格解放解决方案的全球准确性顺序的级别置于线性稠度的全局级。也就是说,通过这些方法,在边值问题的解决方案中,不可能获得MeshFree近似提供的更高阶精度。为了解决这个缺陷,介绍了两种新的弱形形式,以放松传统弱配方中的测试和试验功能的要求。这些与在节点处的基本边界条件强的强制执行,解决了几个基准问题以证明可以使用所提出的方法恢复与近似顺序相关的最佳精度和收敛速率。换句话说,这种方法允许P-Freeinement,并利用Pth订单速率的H-Preinement,首次具有超出线性(P> 1)超出线性(P> 1)的强制执行。此外,引入了一种新的概念,通过增加网格映射中的内核度量来获得改进的精度,以前获得了一种新的概念。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号