首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Layerwise mixed elements with node-dependent kinematics for global-local stress analysis of multilayered plates using high-order Legendre expansions
【24h】

Layerwise mixed elements with node-dependent kinematics for global-local stress analysis of multilayered plates using high-order Legendre expansions

机译:具有节点依赖运动学的分层混合元素,用于使用高阶Legendre展开进行多层板的全局局部应力分析

获取原文
获取原文并翻译 | 示例

摘要

Carrera Unified Formulation (CUF) is taken a step further to render node-dependent kinematics (NDK) capabilities to new layerwise finite elements based on Reissner's Mixed Variational Theorem (RMVT), especially suited for global-local stress analysis of multilayered plates, ensuring high numerical accuracy and computational efficiency, all together. In the framework of CUF, as introduced originally for multilayered structures, any degree of kinematic refinement can be considered in agreement with Equivalent Single-Layer (ESL) or Layer-Wise (LW) theories to develop advanced finite element models, whether based on the Principle of Virtual Displacements (PVD) or RMVT. The degree of kinematic refinement, which usually holds equally for the entire element, can be taken a step further, by being assigned locally to each of its nodes, making full use of CUF to render NDK capabilities to the elements. Besides, even though the elements can adopt any type of nodal shape functions, high p-order hierarchical Legendre expansions (HLE) can also be combined with NDK, achieving excellent convergence rates. These capabilities combined, explored first under the PVD, are for once integrated in the proposed elements under RMVT to further benefit accurate stress analysis. These elements can be applied throughout the entire mesh, adapting to local, transitional and global regions straightforwardly, providing high numerical accuracy, locally, with minimal computational efforts, globally. The numerical results focus on stress analysis of multilayered composite plates, including local effects, to demonstrate the predictive capabilities of the proposed RMVT-based LW elements with NDK and HLE combined, considering well-known benchmark three-dimensional exact solutions for assessment. (C) 2019 Elsevier B.V. All rights reserved.
机译:Carrera统一公式(CUF)进一步迈进了一步,以基于Reissner的混合变分定理(RMVT)的新的分层有限元来提供节点依赖的运动学(NDK)功能,特别适用于多层板的全局局部应力分析,从而确保了较高的数值精度和计算效率,两者合计。在最初针对多层结构引入的CUF框架中,可以考虑等效的单层(ESL)或Layer-Wise(LW)理论来进行任意程度的运动学改进,以开发高级有限元模型,无论是基于虚拟位移原理(PVD)或RMVT。通常在整个元素上均等的运动学改进程度,可以通过将其本地分配给每个节点,并充分利用CUF来为元素提供NDK功能,从而进一步向前迈进。此外,即使元素可以采用任何类型的节点形状函数,也可以将高p阶分层Legendre展开(HLE)与NDK结合使用,从而实现出色的收敛速度。在PVD下首先探讨的这些功能组合在一起,一旦被整合到RMVT下的拟议要素中,就可以进一步受益于精确的应力分析。这些元素可以应用于整个网格,直接适应局部,过渡和全局区域,从而以最小的计算量在全局范围内提供较高的数值精度。数值结果着重于多层复合板的应力分析,包括局部效应,以证明建议的基于RMVT的LW元件与NDK和HLE结合的预测能力,同时考虑了著名的基准三维精确解决方案进行评估。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号