首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Error estimation in reduced basis method for systems with time-varying and nonlinear boundary conditions
【24h】

Error estimation in reduced basis method for systems with time-varying and nonlinear boundary conditions

机译:具有时变和非线性边界条件的系统的降基法误差估计

获取原文
获取原文并翻译 | 示例

摘要

Many physical phenomena, such as mass transport and heat transfer, are modeled by systems of partial differential equations with time-varying and nonlinear boundary conditions. Control inputs and disturbances typically affect the system dynamics at the boundaries and a correct numerical implementation of boundary conditions is therefore crucial. However, numerical simulations of high-order discretized partial differential equations are often too computationally expensive for real-time and many-query analysis. For this reason, model complexity reduction is essential. In this paper, it is shown that the classical reduced basis method is unable to incorporate time-varying and nonlinear boundary conditions. To address this issue, it is shown that, by using a modified surrogate formulation of the reduced basis ansatz combined with a feedback interconnection and a input-related term, the effects of the boundary conditions are accurately described in the reduced-order model. The results are compared with the classical reduced basis method. Unlike the classical method, the modified ansatz incorporates boundary conditions without generating unphysical results at the boundaries. Moreover, a new approximation of the bound and a new estimate for the error induced by model reduction are introduced. The effectiveness of the error measures is studied through simulation case studies and a comparison with existing error bounds and estimates is provided. The proposed approximate error bound gives a finite bound of the actual error, unlike existing error bounds that grow exponentially over time. Finally, the proposed error estimate is more accurate than existing error estimates. (C) 2019 Elsevier B.V. All rights reserved.
机译:许多物理现象,例如传质和传热,都是通过具有时变和非线性边界条件的偏微分方程组建模的。控制输入​​和干扰通常会影响边界处的系统动力学,因此边界条件的正确数值实现至关重要。但是,对于实时和多查询分析,高阶离散偏微分方程的数值模拟通常在计算上过于昂贵。因此,降低模型复杂性至关重要。在本文中,表明经典的简化基方法无法将时变和非线性边界条件纳入其中。为了解决这个问题,它表明,通过使用减少的基数ansatz的改进替代公式,结合反馈互连和与输入有关的术语,可以在降阶模型中准确描述边界条件的影响。将结果与经典的减基法进行比较。与经典方法不同,修改后的ansatz合并了边界条件,而不会在边界处产生非物理结果。此外,引入了新的边界近似和对模型归约引起的误差的新估计。通过仿真案例研究来研究误差措施的有效性,并与现有误差范围和估计值进行比较。所提出的近似误差界限给出了实际误差的有限界限,与现有误差界限随着时间呈指数增长的情况不同。最后,提出的误差估计比现有误差估计更准确。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号