首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Seamless integration of design and Kirchhoff-Love shell analysis using analysis-suitable unstructured T-splines
【24h】

Seamless integration of design and Kirchhoff-Love shell analysis using analysis-suitable unstructured T-splines

机译:使用适合分析的非结构化T样条曲线无缝整合设计和Kirchhoff-Love壳分析

获取原文
获取原文并翻译 | 示例

摘要

Analysis-suitable T-splines (ASTS) including both extraordinary points and T-junctions are used to solve Kirchhoff-Love shell problems. Extraordinary points are required to represent surfaces with arbitrary topological genus. T-junctions enable local refinement of regions where increased resolution is needed. The benefits of using ASTS to define shell geometries are at least two-fold: (1) The manual and time-consuming task of building a new mesh from scratch using the CAD geometry as an input is avoided and (2) C-1 or higher inter-element continuity enables the discretization of shell formulations in primal form defined by fourth-order partial differential equations. A complete and state-of-the-art description of the development of ASTS, including extraordinary points and T-junctions, is presented. In particular, we improve the construction of C-1-continuous non-negative spline basis functions near extraordinary points to obtain optimal convergence rates with respect to the square root of the number of degrees of freedom when solving linear elliptic problems. The applicability of the proposed technology to shell analysis is exemplified by performing geometrically nonlinear Kirchhoff-Love shell simulations of a pinched hemisphere, an oil sump of a car, a pipe junction, and a B-pillar of a car with 15 holes. Building ASTS for these examples involves using T-junctions and extraordinary points with valences 3, 5, and 6, which often suffice for the design of free-form surfaces. Our analysis results are compared with data from the literature using either a seven-parameter shell formulation or Kirchhoff-Love shells. We have also imported both finite element meshes and ASTS meshes into the commercial software LS-DYNA, used Reissner-Mindlin shells, and compared the result with our Kirchhoff-Love shell results. Excellent agreement is found in all cases. The complexity of the shell geometries considered in this paper shows that ASTS are applicable to real-world industrial problems. (C) 2019 Elsevier B.V. All rights reserved.
机译:适用于分析的T样条(ASTS)(包括非凡点和T形结)用于解决Kirchhoff-Love壳问题。需要非凡点来表示具有任意拓扑属的曲面。 T形接头可以对需要提高分辨率的区域进行局部优化。使用ASTS定义壳几何的好处至少有两方面:(1)避免了使用CAD几何作为输入从头开始构建新网格的手动且耗时的任务,以及(2)C-1或较高的元素间连续性可离散化由四阶偏微分方程定义的原始形式的壳体。提供了关于ASTS发展的完整且最新的描述,包括非凡之处和T型路口。特别是,我们在求解线性椭圆问题时改进了C-1连续非负样条曲线基函数在非凡点附近的构造,以获得相对于自由度数平方根的最佳收敛速度。通过对挤压的半球,汽车的油底壳,管接头和15孔汽车的B柱进行几何非线性的Kirchhoff-Love壳模拟,可以举例说明所提出的技术对壳体分析的适用性。为这些示例构建ASTS涉及使用T型结和价3、5和6的非凡点,这通常足以满足自由曲面的设计要求。我们的分析结果与使用七参数壳公式或Kirchhoff-Love壳的文献数据进行了比较。我们还将有限元网格和ASTS网格都导入了商业软件LS-DYNA中,使用了Reissner-Mindlin壳,并将结果与​​我们的Kirchhoff-Love壳结果进行了比较。在所有情况下都可以找到极好的协议。本文考虑的壳几何形状的复杂性表明,ASTS适用于现实世界中的工业问题。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号