首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A partitioned two-step solution algorithm for concurrent fluid flow and stress-strain numerical simulation in solidification processes
【24h】

A partitioned two-step solution algorithm for concurrent fluid flow and stress-strain numerical simulation in solidification processes

机译:凝固过程同时进行的流体流动和应力-应变数值模拟的分区两步求解算法

获取原文
获取原文并翻译 | 示例

摘要

One of the critical challenges encountered when modeling solidification processes is to achieve a concurrent and efficient computation of fluid flow and solid mechanics. Several detrimental casting defects justify this development: cracks, either as a result of stresses built at surface or sub-surface in solidified regions during the filling stage of ingot casting, or due to hot tears deep in the mushy zone during solidification; macrosegregation, as a result of thermo-solutal convection flows and possible deformation of solid. It is therefore of crucial importance to provide for a global and synthetic analysis of casting processes considering a single numerical modeling that includes coupling between fluid flow and solid mechanics. A two-step solution strategy combining fluid flow and solid mechanics has been developed. A partitioned formulation is used, performing at each time increment, separately a solid-oriented resolution and a fluid-oriented resolution. Liquid flow (natural convection or forced flow during ingot filling stage), solidification shrinkage as well as thermally induced deformation of the solid regions are taken into account. The paper presents the numerical formulation in a level set finite element context, and associated validation tests. Application in a practical case corresponding to an ingot filling is proposed in order to investigate the solidification process and associated fluid flow and stress evolutions. Some discussions on computation time and other numerical aspects are also developed at the end in order to show the potential improvements of this methodology. (C) 2019 Elsevier B.V. All rights reserved.
机译:在对凝固过程进行建模时遇到的关键挑战之一是实现对流体流量和固体力学的并行高效的计算。有几个有害的铸造缺陷证明了这种发展的合理性:裂纹是由于在铸锭填充阶段在凝固区域的表面或亚表面上产生的应力所致,或者是由于凝固期间在糊状区域中的深处的热裂而造成的;热对流和固体可能变形的结果是宏观偏析。因此,至关重要的是,提供一个整体的和综合的铸造过程分析,要考虑单个数值模型,其中包括流体流动与固体力学之间的耦合。已经开发了将流体流动和固体力学相结合的两步解决方案策略。使用分配的配方,在每个时间增量上分别执行固体分辨率和流体分辨率。考虑了液体流动(在铸锭填充阶段的自然对流或强制流动),凝固收缩以及固体区域的热致变形。本文介绍了在水平集有限元环境中的数值公式以及相关的验证测试。为了研究凝固过程以及相关的流体流动和应力演变,提出了在与铸锭填充相对应的实际情况下的应用。最后还对计算时间和其他数值方面进行了一些讨论,以显示该方法的潜在改进。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号