首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Variational system identification of the partial differential equations governing the physics of pattern-formation: Inference under varying fidelity and noise
【24h】

Variational system identification of the partial differential equations governing the physics of pattern-formation: Inference under varying fidelity and noise

机译:控制图案形成物理的偏微分方程的变分系统识别:保真度和噪声变化下的推论

获取原文
获取原文并翻译 | 示例

摘要

We present a contribution to the field of system identification of partial differential equations (PDEs), with emphasis on discerning between competing mathematical models of pattern-forming physics. The motivation comes from developmental biology, where pattern formation is central to the development of any multicellular organism, and from materials physics, where phase transitions similarly lead to microstructure. In both these fields there is a collection of nonlinear, parabolic PDEs that, over suitable parameter intervals and regimes of physics, can resolve the patterns or microstructures with comparable fidelity. This observation frames the question of which PDE best describes the data at hand. This question is particularly compelling because identification of the closest representation to the true PDE, while constrained by the functional spaces considered relative to the data at hand, immediately delivers insights to the physics underlying the systems. While building on recent work that uses stepwise regression, we present advances that leverage the variational framework and statistical tests. We also address the influences of variable fidelity and noise in the data. (C) 2019 Elsevier B.V. All rights reserved.
机译:我们提出了对偏微分方程(PDE)的系统识别领域的贡献,重点是区分模式形成物理的竞争数学模型之间的区别。动机来自发育生物学,其中模式形成是任何多细胞生物发展的中心,也来自材料物理学,其中相变类似地导致微观结构。在这两个领域中,都有非线性的,抛物线型的PDE集合,它们在合适的参数间隔和物理机制下,可以以相当的保真度解析出图案或微结构。这种观察提出了一个问题,即哪个PDE最能描述手头的数据。这个问题之所以特别引人注目,是因为确定最接近真实PDE的表示形式,尽管受到相对于手头数据考虑的功能空间的约束,却立即为系统的基础物理学提供了见识。在基于逐步回归的最新工作的基础上,我们介绍了利用变分框架和统计检验的进步。我们还解决了数据中可变保真度和噪声的影响。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号