首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An efficient zigzag theory based finite element modeling of composite and sandwich plates with multiple delaminations using a hybrid continuity method
【24h】

An efficient zigzag theory based finite element modeling of composite and sandwich plates with multiple delaminations using a hybrid continuity method

机译:使用混合连续性方法的基于有效之字形理论的多层板和多层夹层板有限元建模

获取原文
获取原文并翻译 | 示例

摘要

We present a finite element (FE) formulation based on an efficient layerwise (zigzag) theory for stress and vibration analysis of highly inhomogeneous composite and sandwich plates with multiple delaminations using the region method. The delaminations are assumed to be present at multiple interfacial and/or planar locations, and are not allowed to change in size during the deformations. Following the free mode model, the delaminated faces are assumed to have no mutual interaction during deformations. Using a hybrid method, the continuity of inplane displacements at the delamination front is satisfied exactly at the midplanes of the sublaminates separated by delaminations, while the deviations of their through-thickness variations in the intact and delaminated segments are minimized with respect to the rotation variables, using the least squares method. The formulation is shown to yield accurate results with reference to the full-field three dimensional FE solutions, for the deflection, stresses, natural frequencies and mode shapes for delaminated composite as well as highly inhomogeneous single- and double-core sandwich plates. The conventional point and least squares continuity methods, however, show large error for moderately thick plates and for higher than fundamental vibration modes. The smeared third order theory, which has the same number of degrees of freedom as the zigzag theory, is shown to yield grossly inaccurate results for delaminated sandwich plates. The present formulation is more computationally efficient than the layerwise theories that are usually used for such analysis, but is at the same time accurate, simple and robust. (C) 2018 Elsevier B.V. All rights reserved.
机译:我们提出了一种基于有效分层(Zigzag)理论的有限元(FE)公式,用于使用区域方法对高度不均匀的多层复合材料和夹层板进行应力和振动分析。假定分层存在于多个界面和/或平面位置,并且不允许在变形期间改变尺寸。遵循自由模式模型,假定分层的面在变形过程中没有相互影响。使用混合方法,可以精确地满足被分层分隔的子分层的中平面在分层前部的平面位移的连续性,而相对于旋转变量,它们在完整部分和分层部分中的整个厚度变化的偏差最小。 ,使用最小二乘法。相对于全场三维有限元解决方案,该配方对分层复合材料以及高度不均匀的单芯和双芯夹心板的挠度,应力,固有频率和模态形状显示出准确的结果。但是,常规的点和最小二乘连续性方法对于中等厚度的板和高于基本振动模式的情况显示出较大的误差。被涂抹的三阶理论具有与之字形理论相同的自由度,对分层的夹心板得出的结果非常不准确。与通常用于这种分析的分层理论相比,本公式的计算效率更高,但同时又准确,简单且可靠。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号