...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >High-order, linearly stable, partitioned solvers for general multiphysics problems based on implicit-explicit Runge-Kutta schemes
【24h】

High-order, linearly stable, partitioned solvers for general multiphysics problems based on implicit-explicit Runge-Kutta schemes

机译:基于隐式显式Runge-Kutta方案的一般多物理场问题的高阶线性稳定分区求解器

获取原文
获取原文并翻译 | 示例
           

摘要

This work introduces a general framework for constructing high-order, linearly stable, partitioned solvers for multiphysics problems from a monolithic implicit-explicit Runge-Kutta (IMEX-RK) discretization of the semi-discrete equations. The generic multiphysics problem is modeled as a system of n systems of partial differential equations where the ith subsystem is coupled to the other subsystems through a coupling term that can depend on the state of all the other subsystems. This coupled system of partial differential equations reduces to a coupled system of ordinary differential equations via the method of lines where an appropriate spatial discretization is applied to each subsystem. The coupled system of ordinary differential equations is taken as a monolithic system and discretized using an IMEX-RK discretization with a specific implicit-explicit decomposition that introduces the concept of a predictor for the coupling term. We propose four coupling predictors that enable the monolithic system to be solved in a partitioned manner, i.e., subsystem-by-subsystem, and preserve the IMEX-RK structure and therefore the design order of accuracy of the monolithic scheme. The four partitioned solvers that result from these predictors are high-order accurate, allow for maximum re-use of existing single-physics software, and two of the four solvers allow the subsystems to be solved in parallel at a given stage and time step. We also analyze the stability of a coupled, linear model problem with a specific coupling structure and show that one of the partitioned solvers achieves unconditional linear stability for this problem, while the others are unconditionally stable only for certain values of the coupling strength. We demonstrate the performance of the proposed partitioned solvers on several classes of multiphysics problems including a simple linear system of ODEs, advection-diffusion-reaction systems, fluid-structure interaction problems, and particle-laden flows, where we verify the design order of the IMEX schemes and study various stability properties. (C) 2018 Elsevier B.V. All rights reserved.
机译:这项工作介绍了一个整体框架,该框架从半离散方程的整体式隐式显式Runge-Kutta(IMEX-RK)离散化中构造用于多物理场问题的高阶,线性稳定,分区求解器。通用多物理场问题被建模为n个偏微分方程组系统,其中第i个子系统通过耦合项耦合到其他子系统,耦合项取决于所有其他子系统的状态。该偏微分方程的耦合系统通过线的方法简化为常微分方程的耦合系统,其中将适当的空间离散化应用于每个子系统。将常微分方程的耦合系统视为一个整体系统,并使用IMEX-RK离散化技术进行离散化,该方法具有特定的隐式-显式分解,引入了耦合项预测变量的概念。我们提出了四个耦合预测器,这些预测器使整体系统能够以分区方式(即逐个子系统)求解,并保留IMEX-RK结构以及整体方案精度的设计顺序。由这些预测变量产生的四个分区求解器具有较高的精确度,可以最大程度地重用现有的单物理软件,并且四个求解器中的两个允许在给定的阶段和时间步骤并行求解子系统。我们还分析了具有特定耦合结构的耦合线性模型问题的稳定性,并表明,一个分区的求解器可以实现该问题的无条件线性稳定性,而其他求解器仅对某些耦合强度值才具有无条件稳定性。我们演示了拟议的分区求解器在几类多物理场问题上的性能,其中包括简单的ODE线性系统,对流扩散反应系统,流固耦合问题和含粒子流,在此我们验证了求解器的设计顺序IMEX方案并研究各种稳定性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号