首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A multi-temporal scale model reduction approach for the computation of fatigue damage
【24h】

A multi-temporal scale model reduction approach for the computation of fatigue damage

机译:一种用于疲劳损伤计算的多时间尺度模型简化方法

获取原文
获取原文并翻译 | 示例

摘要

One of the challenges of fatigue simulation using continuum damage mechanics framework over the years has been reduction of numerical cost while maintaining acceptable accuracy. The extremely high numerical expense is due to the temporal part of the quantities of interest which must reflect the state of a structure that is subjected to exorbitant number of load cycles. A novel attempt here is to present a non-incremental LATIN-PGD framework incorporating temporal model order reduction. LATIN-PGD method is based on separation of spatial and temporal parts of the mechanical variables, thereby allowing for separate treatment of the temporal problem. The internal variables, especially damage, although extraneous to the variable separation, must also be treated in a tactical way to reduce numerical expense. A temporal multi-scale approach is proposed that is based on the idea that the quantities of interest show a slow evolution along the cycles and a rapid evolution within the cycles. This assumption boils down to a finite element like discretisation of the temporal domain using a set of "nodal cycles" defined on the slow time scale. Within them, the quantities of interest must satisfy the global admissibility conditions and constitutive relations with respect to the fast time scale. Thereafter, information of the "nodal cycles" can be interpolated to simulate the behaviour on the whole temporal domain. This numerical strategy is tested on different academic examples and leads to an extreme reduction in numerical expense. (C) 2018 Elsevier B.V. All rights reserved.
机译:多年来,使用连续损伤力学框架进行疲劳模拟的挑战之一是在保持可接受的精度的同时降低数值成本。极高的数值开销是由于感兴趣的量的时间部分所致,该时间量必须反映承受过多载荷循环的结构状态。这里的新颖尝试是提出一种结合了时间模型阶数减少的非增量LATIN-PGD框架。 LATIN-PGD方法基于机械变量的空间和时间部分的分离,从而允许对时间问题进行单独处理。内部变量,特别是损害,尽管与变量分离无关,但也必须以战术方式加以处理,以减少数字费用。提出了一种时间多尺度方法,该方法基于这样的想法,即感兴趣的量显示出沿着周期的缓慢演化和在周期内的快速演化。该假设归结为一个有限元素,例如使用在慢时标上定义的一组“节点周期”对时域进行离散化。在其中,感兴趣的数量必须满足全局准入条件和关于快速时间尺度的本构关系。此后,可以插入“节点周期”的信息以模拟整个时域上的行为。这种数值策略已在不同的学术实例上进行了测试,从而极大地减少了数值费用。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号