首页> 外文期刊>Computer and information science >Bankruptcy Prediction Using Bayesian, Hazard, Mixed Logit and Rough Bayesian Models: A Comparative Analysis
【24h】

Bankruptcy Prediction Using Bayesian, Hazard, Mixed Logit and Rough Bayesian Models: A Comparative Analysis

机译:使用贝叶斯,风险,混合Logit和粗糙贝叶斯模型的破产预测:比较分析

获取原文
获取原文并翻译 | 示例

摘要

Bankruptcy prediction has been a topic of active research for business and corporate institutions in recent times. The problem has been tackled using various models viz. Statistical, Market Based and Computational Intelligence in the past. In this work, we analyze bankruptcy using both parametric and nonparametric prediction techniques. This investigation concentrates on the impact of choice of cut off points, sampling procedures and business cycle on accuracy of bankruptcy prediction models. Misclassification can result in erroneous predictions leading to prohibitive costs to investors and economy. To test the impact of choice of cut off points and sampling procedures, four bankruptcy prediction models are examined viz. Bayesian, Hazard, Mixed Logit and Rough Bayesian techniques. To evaluate the relative performance of models, a sample of firms from Lynn M. LoPucki Bankruptcy Research Database in US is used. The choice of cut off point and sampling procedures are found to affect rankings of various models. The results indicate that empirical cut off point estimated from training sample resulted in lowest misclassification costs for all the models. Although Hazard and Mixed Logit models resulted in lower costs of misclassification in randomly selected samples, Mixed Logit model did not perform well across varying business cycles. Hazard model has highest predictive power. However, higher predictive power of Rough Bayesian and Bayesian modes when ratio of cost of Type I to cost of Type II errors is high is relatively consistent across all sampling methods. This advantage of Bayesian models may make them more attractive in current economic environment. This study also compares the performance of bankruptcy prediction models by identifying conditions under which a model performs better. It applies to a varied range of user groups including auditors, shareholders, employees, suppliers, rating agencies and creditors' concerns with respect to assessing failure risk.
机译:破产预测已成为近来商业和公司机构积极研究的主题。该问题已通过使用各种模型来解决。过去的统计,基于市场和计算智能。在这项工作中,我们使用参数和非参数预测技术来分析破产。这项调查集中于选择截止点,抽样程序和业务周期对破产预测模型准确性的影响。分类错误会导致错误的预测,从而给投资者和经济带来沉重的成本。为了测试选择截止点和抽样程序的影响,检查了四个破产预测模型。贝叶斯,危险,混合Logit和粗糙贝叶斯技术。为了评估模型的相对性能,使用了来自美国Lynn M. LoPucki破产研究数据库的公司样本。发现截止点和采样程序的选择会影响各种模型的排名。结果表明,从训练样本估计的经验截止点导致所有模型的最低误分类成本。尽管危害模型和混合Logit模型导致随机选择样本中错误分类的成本降低,但混合Logit模型在不同的业务周期中表现不佳。危害模型具有最高的预测能力。但是,在所有采样方法中,当类型I的成本与类型II的误差的成本之比较高时,粗糙贝叶斯和贝叶斯模式的较高预测能力相对一致。贝叶斯模型的这一优势可能使它们在当前的经济环境中更具吸引力。这项研究还通过确定模型在更好的条件下进行比较来比较破产预测模型的性能。它适用于各种用户组,包括审计师,股东,雇员,供应商,评级机构和债权人在评估失败风险方面的顾虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号