首页> 外文期刊>Computer and information science >A Synthetic Player for Ayo Board Game Using Alpha-Beta Search and Learning Vector Quantization
【24h】

A Synthetic Player for Ayo Board Game Using Alpha-Beta Search and Learning Vector Quantization

机译:使用Alpha-Beta搜索和学习矢量量化的Ayo棋盘游戏综合玩家

获取原文
获取原文并翻译 | 示例

摘要

Game playing especially, Ayo game has been an important topic of research in artificial intelligence and several machine learning approaches have been used, but the need to optimize computing resources is important to encourage significant interest of users. This study presents a synthetic player (Ayo) implemented using Alpha-beta search and Learning Vector Quantization network. The program for the board game was written in Java and MATLAB. Evaluation of the synthetic player was carried out in terms of the win percentage and game length. The synthetic player had a better efficiency compared to the traditional Alpha-beta search algorithm.
机译:尤其是玩游戏,Ayo游戏一直是人工智能研究的重要课题,并且已经使用了多种机器学习方法,但是优化计算资源的需求对于激发用户的极大兴趣很重要。这项研究介绍了使用Alpha-beta搜索和学习矢量量化网络实现的合成播放器(Ayo)。棋盘游戏的程序是用Java和MATLAB编写的。根据胜率和比赛时长对综合球员进行评估。与传统的Alpha-beta搜索算法相比,合成播放器的效率更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号