首页> 外文期刊>IEEE Computer Graphics and Applications >High-Fidelity Point-Based Rendering of Large-Scale 3-D Scan Datasets
【24h】

High-Fidelity Point-Based Rendering of Large-Scale 3-D Scan Datasets

机译:基于高保真点的大型3-D扫描数据集的渲染

获取原文
获取原文并翻译 | 示例

摘要

Digitalization of three-dimensional (3-D) objects and scenes using modern depth sensors and high-resolution RGB cameras enables the preservation of human cultural artifacts at an unprecedented level of detail. Interactive visualization of these large datasets, however, is challenging without degradation in visual fidelity. A common solution is to fit the dataset into available video memory by downsampling and compression. The achievable reproduction accuracy is thereby limited for interactive scenarios, such as immersive exploration in virtual reality (VR). This degradation in visual realism ultimately hinders the effective communication of human cultural knowledge. This article presents a method to render 3-D scan datasets with minimal loss of visual fidelity. A point-based rendering approach visualizes scan data as a dense splat cloud. For improved surface approximation of thin and sparsely sampled objects, we propose oriented 3-D ellipsoids as rendering primitives. To render massive texture datasets, we present a virtual texturing system that dynamically loads required image data. It is paired with a single-pass page prediction method that minimizes visible texturing artifacts. Our system renders a challenging dataset in the order of 70 million points and a texture size of 1.2 TB consistently at 90 frames per second in stereoscopic VR.
机译:使用现代深度传感器和高分辨率RGB摄像机的三维(3-D)对象和场景的数字化使得能够以前所未有的细节水平保存人类文化伪影。然而,这些大型数据集的交互式可视化是在视觉保真度下劣化的情况下具有挑战性。通用解决方案是通过下采样和压缩将数据集拟合到可用的视频内存中。因此,可实现的再现精度是有限的,用于交互式方案,例如虚拟现实(VR)中的沉浸性探索。视觉现实主义的这种退化最终阻碍了人类文化知识的有效沟通。本文介绍了一种方法来渲染3-D扫描数据集,具有最小的视觉保真度。基于点的渲染方法可视化扫描数据作为密集的Splat云。为了改善薄稀有的采样物对象的表面近似,我们将3-D椭球作为渲染原语提出。为了渲染大量纹理数据集,我们介绍了一个动态加载所需图像数据的虚拟纹理系统。它与单通页面预测方法配对,可最大限度地减少可见纹理伪影。我们的系统在立体VR中每秒90帧,纹理大小为7000万点的具有挑战性的数据集,纹理大小为1.2 TB。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号