首页> 外文期刊>Computer Communications >On deep reinforcement learning security for Industrial Internet of Things
【24h】

On deep reinforcement learning security for Industrial Internet of Things

机译:关于工业互联网的深度加固学习安全

获取原文
获取原文并翻译 | 示例

摘要

The Industrial Internet of Things (IIoT), also known as Industry 4.0, empowers manufacturing and production processes by leveraging automation and Internet of Things (IoT) technologies. In IIoT, the information communication technologies enabled by IoT could greatly improve the efficiency and timeliness of information exchanges between both vertical and horizontal system integrations. Likewise, machine learning algorithms, particularly Deep Reinforcement Learning (DRL), are viable for assisting in automated control of complex IIoT systems, with the support of distributed edge computing infrastructure. Despite noticeable performance improvements, the security threats brought by massive interconnections in IoT and the vulnerabilities of deep neural networks used in DRL must be thoroughly investigated and mitigated before widespread deployment. Thus, in this paper we first design a DRL-based controller that could be deployed at edge computing server to enable automated control in an IIoT context. We then investigate malicious behaviors of adversaries with two attacks: (i) function-based attacks that can be launched during training phase and (ii) performance-based attacks that can be launched after training phase, to study the security impacts of vulnerable DRL-based controllers. From the adversary's perspective, maximum entropy Inverse Reinforcement Learning (IRL) is used to approximate a reward function through observation of system trajectories under the control of trained DRL-based controllers. The approximated reward function is then used to launch attacks by the adversary against the Deep Q Network (DQN)-based controller. Via simulation, we evaluate the impacts of our two investigated attacks, finding that attacks are increasingly successful with increasing accuracy of the control model. Furthermore, we discuss some tradeoffs between control performance and security performance of DRL-based IIoT controllers, and outline several future research directions to secure machine learning use in IIoT systems.
机译:工业互联网(IIT),也被称为行业4.0,通过利用自动化和互联网(物联网)技术来实现制造和生产流程。在IIT中,IOT启用的信息通信技术可以大大提高垂直和水平系统集成之间信息交换的效率和及时性。同样地,机器学习算法,特别是深度增强学习(DRL),可用于辅助分布式边缘计算基础设施的支持,辅助复杂IIOT系统的自动控制。尽管具有明显的性能改进,但在广泛部署之前,必须在广泛的部署之前彻底调查和减轻DRL中使用的大规模互连带来的安全威胁和DRL中使用的深神经网络的脆弱性。因此,在本文中,我们首先设计一个基于DRL的控制器,可以在Edge Computing Server上部署,以在IIOT上下文中启用自动控制。然后,我们调查两次攻击的对手的恶意行为:(i)可以在培训阶段和(ii)在培训阶段之后推出的基于职能的攻击的基于功能的攻击,以研究弱势群体的安全影响 - 基于控制器。从逆境的角度来看,最大熵逆加强学习(IR)用于通过观察系统轨迹在训练基于DRL的基于训练的控制器的控制下近似奖励功能。然后,近似奖励函数用于通过对抗对Q网络(DQN)的控制器的对手发射攻击。通过模拟,我们评估了我们两个调查攻击的影响,发现攻击越来越成功,随着控制模型的准确性。此外,我们讨论了基于DRL的IIOT控制器的控制性能和安全性能之间的一些权衡,并概述了几种未来的研究方向,以确保IIT系统中的机器学习使用。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号