首页> 外文期刊>Computer Communications >Geo-distributed efficient deployment of containers with Kubernetes
【24h】

Geo-distributed efficient deployment of containers with Kubernetes

机译:带有Kubernetes的地理分布式高效部署容器

获取原文
获取原文并翻译 | 示例

摘要

Software containers are changing the way applications are designed and executed. Moreover, in the last few years, we see the increasing adoption of container orchestration tools, such as Kubernetes, to simplify the management of multi-container applications. Kubernetes includes simple deployment policies that spread containers on computing resources located in the cluster and automatically scale them out or in based on some cluster-level metrics. As such, Kubernetes is not well-suited for deploying containers in a geo-distributed computing environment and dealing with the dynamism of application workload and computing resources.To tackle the problem, in this paper we present ge-kube (Geo-distributed and Elastic deployment of containers in Kubernetes), an orchestration tool that relies on Kubernetes and extends it with self-adaptation and network-aware placement capabilities. Ge-kube introduces flexible and decentralized control loops that can be easily equipped with different deployment policies. Specifically, we propose a two-step control loop, in which a model-based reinforcement learning approach dynamically controls the number of replicas of individual containers on the basis of the application response time, and a network-aware placement policy allocates containers on geo-distributed computing resources. To address the placement issue, we propose an optimization problem formulation and a network-aware heuristic, which explicitly take into account the non-negligible network delays among computing resources so to satisfy Quality of Service requirements of latency-sensitive applications. Using a surrogate CPU-intensive application and a real application (i.e., Redis), we conducted an extensive set of experiments, which show the benefits arising from the combination of elasticity and placement policies, as well as the advantages of using network-aware placement solutions.
机译:软件容器正在更改应用程序的设计和执行方式。此外,在过去的几年中,我们看到越来越多的采用容器编排工具(如Kubernetes),以简化多容器应用的管理。 Kubernetes包括简单的部署策略,可在集群中的计算资源上传播容器,并根据某些群集级度量自动扩展它们。因此,Kubernetes不适合在地理分布式计算环境中部署容器,并处理应用程序工作负载和计算资源的动态主义。在本文中解决了这个问题,我们呈现GE-Kube(地理分布和弹性在Kubernetes中部署容器),依赖于Kubernetes的编排工具,并将其扩展为自适应和网络感知的放置能力。 GE-Kube推出了灵活和分散的控制环,可轻松配备不同的部署策略。具体地,我们提出了一个两步控制回路,其中基于模型的增强学习方法在应用响应时间的基础上动态地控制各个容器的副本数,以及网络感知放置策略为地理上分配容器分布式计算资源。为了解决展示位置问题,我们提出了一个优化问题制定和网络感知启发式,这明确地考虑了计算资源之间的不可忽略的网络延迟,以满足延迟敏感应用的服务质量。使用代理CPU密集型应用程序和实际应用(即REDIS),我们进行了广泛的实验,这表明了弹性和放置政策的组合产生的益处,以及使用网络感知放置的优势解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号