首页> 外文期刊>Computer architecture news >Exploiting Coarse-Grained Task, Data, and Pipeline Parallelism in Stream Programs
【24h】

Exploiting Coarse-Grained Task, Data, and Pipeline Parallelism in Stream Programs

机译:在流程序中利用粗粒度的任务,数据和管道并行性

获取原文
获取原文并翻译 | 示例

摘要

As multicore architectures enter the mainstream, there is a pressing demand for high-level programming models that can effectively map to them. Stream programming offers an attractive way to expose coarse-grained parallelism, as streaming applications (image, video, DSP, etc.) are naturally represented by independent filters that communicate over explicit data channels. In this paper, we demonstrate an end-to-end stream compiler that attains robust multicore performance in the face of varying application characteristics. As benchmarks exhibit different amounts of task, data, and pipeline parallelism, we exploit all types of parallelism in a unified manner in order to achieve this generality. Our compiler, which maps from the Streamlt language to the 16-core Raw architecture, attains a 11.2x mean speedup over a single-core baseline, and a 1.84x speedup over our previous work.
机译:随着多核体系结构进入主流,迫切需要能够有效映射到它们的高级编程模型。流编程提供了一种吸引人的方式来暴露粗粒度的并行性,因为流应用程序(图像,视频,DSP等)自然由通过显式数据通道进行通信的独立过滤器表示。在本文中,我们演示了一种端到端流编译器,该编译器在面对变化的应用程序特性时可实现强大的多核性能。由于基准测试表现出不同数量的任务,数据和管道并行性,因此我们以统一的方式利用所有类型的并行性以实现这种通用性。我们的编译器从Streamlt语言映射到16核Raw架构,在单核基线上的平均速度提高了11.2倍,在我们先前的工作中达到了1.84倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号