首页> 外文期刊>Computer architecture news >An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms
【24h】

An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms

机译:现代DRAM器件中数据保留行为的实验研究:保留时间分析机制的含义

获取原文
获取原文并翻译 | 示例

摘要

DRAM cells store data in the form of charge on a capacitor. This charge leaks off over time, eventually causing data to be lost. To prevent this data loss from occurring, DRAM cells must be periodically refreshed. Unfortunately, DRAM refresh operations waste energy and also degrade system performance by interfering with memory requests. These problems are expected to worsen as DRAM density increases. The amount of time that a DRAM cell can safely retain data without being refreshed is called the cell's retention time. In current systems, all DRAM cells are refreshed at the rate required to guarantee the integrity of the cell with the shortest retention time, resulting in unnecessary refreshes for cells with longer retention times. Prior work has proposed to reduce unnecessary refreshes by exploiting differences in retention time among DRAM cells; however, such mechanisms require knowledge of each cell's retention time. In this paper, we present a comprehensive quantitative study of retention behavior in modern DRAMs. Using a temperature-controlled FPGA-based testing platform, we collect retention time information from 248 commodity DDR3 DRAM chips from five major DRAM vendors. We observe two significant phenomena: data pattern dependence, where the retention time of each DRAM cell is significantly affected by the data stored in other DRAM cells, and variable retention time, where the retention time of some DRAM cells changes unpredictably over time. We discuss possible physical explanations for these phenomena, how their magnitude may be affected by DRAM technology scaling, and their ramifications for DRAM retention time profiling mechanisms.
机译:DRAM单元以电荷形式在电容器上存储数据。随着时间的流逝,这种电荷会泄漏,最终导致数据丢失。为了防止发生这种数据丢失,必须定期刷新DRAM单元。不幸的是,DRAM刷新操作浪费了能量,并且通过干扰内存请求也降低了系统性能。随着DRAM密度的增加,这些问题有望进一步恶化。 DRAM单元可以安全地保留数据而无需刷新的时间称为单元的保留时间。在当前系统中,所有DRAM单元均以确保具有最短保留时间的单元完整性所需的速率进行刷新,从而导致具有较长保留时间的单元不必要的刷新。先前的工作提出了通过利用DRAM单元之间的保留时间差异来减少不必要的刷新。但是,这种机制需要了解每个细胞的保留时间。在本文中,我们对现代DRAM中的保留行为进行了全面的定量研究。我们使用基于温度控制的FPGA的测试平台,从五家主要DRAM供应商的248种商品DDR3 DRAM芯片中收集保留时间信息。我们观察到两个重要现象:数据模式依赖性,其中每个DRAM单元的保留时间受存储在其他DRAM单元中的数据显着影响;以及可变的保留时间,其中某些DRAM单元的保留时间随时间变化而无法预测。我们讨论了这些现象的可能的物理解释,DRAM技术的扩展如何影响其幅度以及它们对DRAM保留时间分析机制的影响。

著录项

  • 来源
    《Computer architecture news》 |2013年第3期|60-71|共12页
  • 作者单位

    Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213,Google Inc., 1600 Amphitheatre Pkwy., Mountain View, CA 94043;

    Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213,Google Inc., 1600 Amphitheatre Pkwy., Mountain View, CA 94043;

    Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213;

    Intel Corporation 2200 Mission College Blvd. Santa Clara, CA 95054;

    Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号