首页> 外文期刊>Computer applications in engineering education >A data‐mining‐based approach to informed decision‐making in engineering education
【24h】

A data‐mining‐based approach to informed decision‐making in engineering education

机译:基于数据挖掘的工程教育决策方法

获取原文
获取原文并翻译 | 示例

摘要

In outcome-based academic programs, Program Educational Objectives (PEOs) and Student Outcomes (SOs) are two cores around which all programs' components and processes revolve. Needless to say, the PEOs-SOs mapping is very critical for program success and, therefore, a deep understanding of PEOs, SOs, and their intra/inter-correlations is very important for effective program's decisions making. In this context, this paper proposes a data mining-based approach to discover hidden knowledge of PEOs, SOs, and their mapping and correlations in engineering programs. More specifically, the proposed approach employs association rule mining techniques to generate association rules, among and between PEOs and SOs, from PEOs-SOs mapping data of a set of engineering programs, which can be then filtered and manipulated to discover the desired knowledge. To this end, a set of 152 self-study reports of engineering programs, accredited by American Board for Engineering and Technology-Engineering Accreditation Commission (ABET-EAC), are collected and the mapping data between their PEOs and ABET-EAC SOs are extracted. The dataset is processed and transformed into a representation suitable for association rules mining. This involves developing a set of PEOs labels, annotating data with PEOs labels, and extracting three target datasets. Apriori algorithm is then applied to each dataset to generate three sets of association rules. The generated association rules are then filtered and manipulated to discover the knowledge of PEOs, ABET-EAC SOs, and their mapping and correlations. Finally, a discussion on the informativeness of the discovered knowledge for the decisions making in engineering education is given.
机译:在基于结果的学术计划中,计划教育目标(PEO)和学生成果(SO)是两个核心,所有计划的组成部分和过程都围绕该两个核心发展。毋庸置疑,PEO-SO的映射对于程序成功至关重要,因此,深入了解PEO,SO及其内部/相互之间的关系对于有效的程序决策非常重要。在这种情况下,本文提出了一种基于数据挖掘的方法,以发现PEO,SO及其在工程程序中的映射和相关性的隐藏知识。更具体地说,所提出的方法利用关联规则挖掘技术从一组工程程序的PEO-SO映射数据中生成PEO和SO之间以及之间的关联规则,然后可以对其进行过滤和操纵以发现所需的知识。为此,收集了由美国工程技术和工程技术鉴定委员会(ABET-EAC)认可的152份工程项目自学报告,并提取了其PEO与ABET-EAC SO之间的映射数据。 。处理数据集并将其转换为适合关联规则挖掘的表示形式。这涉及开发一组PEO标签,用PEO标签注释数据以及提取三个目标数据集。然后将Apriori算法应用于每个数据集,以生成三组关联规则。然后,对生成的关联规则进行过滤和处理,以发现PEO,ABET-EAC SO的知识以及它们的映射和相关性。最后,讨论了所发现知识对工程教育决策的信息性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号