首页> 外文期刊>Computer Animation and Virtual Worlds >SRNPD: Spatial rendering network for pencil drawing stylization
【24h】

SRNPD: Spatial rendering network for pencil drawing stylization

机译:SRNPD:铅笔绘制程式化的空间渲染网络

获取原文
获取原文并翻译 | 示例

摘要

Pencil drawing is a simple yet effective way to depict what people see by clearly presenting details of the scene. Existing methods usually extract strokes of the input image and adjust the result image tone to make it look like a pencil drawing. However, they do not consider the quality of the stroke image and the geometry information of lines in the stroke image, which unavoidably results in the violation of original essential structures and in a flatten pencil drawing with unrealistic appearance. We put forward a spatial rendering network for pencil drawing stylization. Spatial stroke images are extracted from the image pyramid by a single-shot bottom-up neural network to improve the quality of these stroke images. Unlike the former tone adjustment-based methods, we analyze perceptual cues of strokes at different stroke image levels and use the obtained geometry information to constrain the stroke shading procedure. The final pencil drawing result is achieved by the stroke shading fusion of different levels' shading results. The effectiveness of our spatial rendering network for pencil drawing stylization is demonstrated by an ablation study, comparison to the state of the art, and a user study.
机译:铅笔绘图是一种简单而有效的方法,可以通过清楚地介绍场景的细节来描述人们所看到的。现有方法通常提取输入图像的笔划并调整结果图像音调以使其看起来像铅笔绘图。然而,它们不考虑行程图像的音阶图像的质量和行程图像中的线的几何信息,这不可避免地导致违反原始基本结构和具有不切实际的外观的扁平铅笔绘图。我们提出了一种用于铅笔绘制程式化的空间渲染网络。通过单射下自下而上的神经网络从图像金字塔中提取空间行程图像,以提高这些行程图像的质量。与基于语调调整的方法不同,我们在不同的笔划图像级别分析笔划的感知线索,并使用所获得的几何信息来限制行程阴影过程。最后的铅笔绘图结果是通过不同级别的阴影结果的行程阴影融合来实现的。通过烧蚀研究,与现有技术的比较和用户学习,证明了我们的空间渲染网络的铅笔绘制程式化的有效性。

著录项

  • 来源
    《Computer Animation and Virtual Worlds》 |2019年第4期|e1890.1-e1890.13|共13页
  • 作者单位

    Macau Univ Sci & Technol Fac Informat Technol Taipa Macao Peoples R China;

    Macau Univ Sci & Technol Fac Informat Technol Taipa Macao Peoples R China|Hong Kong Polytech Univ Dept Comp Kowloon Hong Kong Peoples R China;

    Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai Peoples R China;

    South China Univ Technol Sch Comp Sci & Engn Guangzhou Guangdong Peoples R China;

    Univ Sydney Sch Informat Technol Sydney NSW Australia;

    Chinese Acad Sci Inst Software State Key Lab Comp Sci Beijing Peoples R China|Univ Macau Fac Sci & Technol Taipa Macao Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    geometry information constraint; single-shot bottom-up; spatial rendering network; stroke shading fusion;

    机译:几何信息约束;单射下自下而上;空间渲染网络;行程阴影融合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号