首页> 外文期刊>Computer Animation and Virtual Worlds >A genetic algorithm approach to human motion capture data segmentation
【24h】

A genetic algorithm approach to human motion capture data segmentation

机译:遗传算法在人体运动捕捉数据分割中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel genetic algorithm approach to human motion capture (MoCap) data segmentation. For a given MoCap sequence, it constructs a symbolic representation through unsupervised sparse learning, detects the candidate segmenting points to the sequence, models the selection/deselection of each candidate with a gene, and employs the genetic algorithm to find the optimal solution. To the best of our knowledge, we for the first time introduce the genetic algorithm and the sparse learning technique to the problem of MoCap data segmentation, leading to excellent segmentation performance as experimentally demonstrated. Copyright (c) 2014 John Wiley & Sons, Ltd.
机译:在本文中,我们提出了一种新颖的遗传算法来进行人类运动捕捉(MoCap)数据分割。对于给定的MoCap序列,它通过无监督的稀疏学习来构建符号表示,检测该序列的候选分割点,使用基因对每个候选对象的选择/取消选择进行建模,并使用遗传算法找到最佳解决方案。据我们所知,我们首次将遗传算法和稀疏学习技术引入了MoCap数据分割问题,从而通过实验证明了出色的分割性能。版权所有(c)2014 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号