首页> 外文期刊>Computational Statistics >Crisp and fuzzy k-means clustering algorithms for multivariate functional data
【24h】

Crisp and fuzzy k-means clustering algorithms for multivariate functional data

机译:多元函数数据的脆性和模糊k均值聚类算法

获取原文
获取原文并翻译 | 示例

摘要

Functional data analysis, as proposed by Ramsay (Psychometrika 47:379–396, 1982), has recently attracted many researchers. The most popular approach taken in recent studies of functional data has been the extension of statistical methods for the analysis of usual data to that of functional data (e.g., Ramsay and Silverman in Functional data Analysis Springer, Berlin Heidelberg New York, 1997, Applied functional data analysis: methods and case studies. Springer, Berlin Heidelberg New York, 2002; Mizuta in Proceedings of the tenth Japan and Korea Joint Conference of Statistics, pp 77–82, 2000; Shimokawa et al. in Japan J Appl Stat 29:27–39, 2000). In addition, several methods for clustering functional data have been proposed (Abraham et al. in Scand J Stat 30:581–595, 2003; Gareth and Catherine in J Am Stat Assoc 98:397–408, 2003; Tarpey and kinateder in J Classif 20:93–114, 2003; Rossi et al. in Proceedings of European Symposium on Artificial Neural Networks pp 305–312, 2004). Furthermore, Tokushige et al. (J Jpn Soc Comput Stat 15:319–326, 2002) defined several dissimilarities between functions for the case of functional data. In this paper, we extend existing crisp and fuzzy k-means clustering algorithms to the analysis of multivariate functional data. In particular, we consider the dissimilarity between functions as a function. Furthermore, cluster centers and memberships, which are defined as functions, are determined at the minimum of a certain target function by using a calculus-of-variations approach.
机译:Ramsay提出的功能数据分析(Psychometrika 47:379–396,1982)最近吸引了许多研究人员。在功能数据的最新研究中,最流行的方法是将用于分析常规数据的统计方法扩展到功能数据(例如,Ramsay和Silverman的功能数据分析,Springer,柏林,海德堡,纽约,1997年,应用功能数据分析:方法和案例研究,施普林格,柏林,海德堡,纽约,2002年;水田在第十届日韩统计联合会议论文集,第77-82页,2000年; Shimokawa等在日本,J Appl Stat 29:27 – 39,2000)。另外,已经提出了几种对功能数据进行聚类的方法(Abraham等人,在Scand J Stat 30:581-595,2003; Gareth和Catherine在J Am Stat Assoc 98:397-408,2003; Tarpey和kinateder在J Classif 20:93–114,2003; Rossi等,《欧洲人工神经网络研讨会论文集》第305–312,2004)。此外,Tokushige等。 (J Jpn Soc Comput Stat 15:319–326,2002)在功能数据的情况下定义了功能之间的一些差异。在本文中,我们将现有的清晰和模糊k均值聚类算法扩展到多元功能数据的分析。特别是,我们将函数之间的差异视为函数。此外,定义为函数的聚类中心和隶属关系是通过使用微积分方法在某个目标函数的最小值处确定的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号