首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Memory Augmented Hierarchical Attention Network for Next Point-of-Interest Recommendation
【24h】

Memory Augmented Hierarchical Attention Network for Next Point-of-Interest Recommendation

机译:下一个兴趣点推荐内存增强分层关注网络

获取原文
获取原文并翻译 | 示例

摘要

Next point-of-interest (POI) recommendation has been an important task for location-based intelligent services. However, the application of such promising technique is still limited due to the following three challenges: 1) the difficulty of capturing complicated spatiotemporal patterns of user movements; 2) the hardness of modeling fine-grained long-term preferences of users; and 3) the effective learning of interaction between long- and short-term preferences. Motivated by this, we propose a memory augmented hierarchical attention network (MAHAN), which considers both short-term check-in sequences and long-term memories. To capture the complicated interest tendencies of users within a short-term period, we design a spatiotemporal self-attention network (ST-SAN). For long-term preferences modeling, we employ a memory network to maintain fine-grained preferences of users and dynamically operate them based on users' constantly updated check-ins. Moreover, we first employ a coattention network/mechanism to integrate the proposed ST-SAN and memory network, which can fully learn the dynamic interaction between long- and short-term preferences. Our extensive experiments on two publicly available data sets demonstrate the effectiveness of MAHAN.
机译:下一个兴趣点(POI)推荐一直是基于位置的智能服务的重要任务。然而,由于以下三个挑战,这种有希望技术的应用仍然有限:1)捕获复杂的时空模式的用户运动难度; 2)模拟细粒度的长期偏好用户的硬度; 3)有效地学习长期和短期偏好之间的相互作用。由此激励,我们提出了一种内存增强的分层关注网络(Mahan),其考虑短期检查序列和长期记忆。为了在短期期间捕获用户的复杂兴趣趋势,我们设计了一种时空自我关注网络(ST-SAN)。对于长期首选项建模,我们采用内存网络来维护用户的细粒度偏好,并根据用户不断更新的签入动态操作它们。此外,我们首先采用一个共同集成网络/机制来集成所提出的ST-SAN和内存网络,这可以完全了解长期和短期偏好之间的动态交互。我们对两种公开数据集的广泛实验表明了马汉的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号