首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Detecting Group Shilling Attacks in Online Recommender Systems Based on Bisecting K-Means Clustering
【24h】

Detecting Group Shilling Attacks in Online Recommender Systems Based on Bisecting K-Means Clustering

机译:基于Boting K-Means聚类的在线推荐系统中检测组先令攻击

获取原文
获取原文并翻译 | 示例

摘要

Existing shilling attack detection approaches focus mainly on identifying individual attackers in online recommender systems and rarely address the detection of group shilling attacks in which a group of attackers colludes to bias the output of an online recommender system by injecting fake profiles. In this article, we propose a group shilling attack detection method based on the bisecting K-means clustering algorithm. First, we extract the rating track of each item and divide the rating tracks to generate candidate groups according to a fixed time interval. Second, we propose item attention degree and user activity to calculate the suspicious degrees of candidate groups. Finally, we employ the bisecting K-means algorithm to cluster the candidate groups according to their suspicious degrees and obtain the attack groups. The results of experiments on the Netflix and Amazon data sets indicate that the proposed method outperforms the baseline methods.
机译:现有的先令攻击检测方法主要集中在在线推荐系统中识别单个攻击者,并且很少解决群体先令攻击的检测,其中一组攻击者通过注入虚假配置文件来偏置在线推荐系统的输出。在本文中,我们提出了一种基于B样本K-Means聚类算法的Shiping攻击检测方法。首先,我们提取每个项目的额定轨道,并将额定轨道划分以根据固定时间间隔生成候选组。其次,我们提出物品注意程度和用户活动来计算可疑候选人群体。最后,我们采用了B分类K-Mean算法根据其可疑程度来聚类候选组并获得攻击组。 Netflix和亚马逊数据集的实验结果表明所提出的方法优于基线方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号