首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Improved TrAdaBoost and its Application to Transaction Fraud Detection
【24h】

Improved TrAdaBoost and its Application to Transaction Fraud Detection

机译:改进了TradaBoost及其在交易欺诈检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

AdaBoost is a boosting-based machine learning method under the assumption that the data in training and testing sets have the same distribution and input feature space. It increases the weights of those instances that are wrongly classified in a training process. However, the assumption does not hold in many real-world data sets. Therefore, AdaBoost is extended to transfer AdaBoost (TrAdaBoost) that can effectively transfer knowledge from one domain to another. TrAdaBoost decreases the weights of those instances that belong to the source domain but are wrongly classified in a training process. It is more suitable for the case that data are of different distribution. Can it be improved for some special transfer scenarios, e.g., the data distribution changes slightly over time? We find that the distribution of credit card transaction data can change with the changes in the transaction behaviors of users, but the changes are slow most of the time. These changes are yet important for detecting transaction fraud since they result in a so-called concept drift problem. In order to make TrAdaBoost more suitable for the abovementioned case, we, thus, propose an improved TrAdaBoost (ITrAdaBoost) in this article. It updates (i.e., increases or decreases) the weight of a wrongly classified instance in a source domain according to the distribution distance from the instance to a target domain, and the calculation of distance is based on the theory of reproducing kernel Hilbert space. We do a series of experiments over five data sets, and the results illustrate the advantage of ITrAdaBoost.
机译:Adaboost是一种基于促进的机器学习方法,假设训练和测试集中的数据具有相同的分布和输入特征空间。它增加了在培训过程中错误分类的那些情况的权重。然而,假设在许多现实世界数据集中不存在。因此,Adaboost扩展到转移Adaboost(TradaBoost),可以将能够从一个域转移到另一个域的知识。 Tryaboost会减少属于源域的实例的权重,但在培训过程中被错误分类。它更适合数据具有不同分布的情况。可以改进一些特殊传输方案,例如,数据分布随时间略有变化?我们发现信用卡交易数据的分发可以随着用户交易行为的变化而变化,但大部分时间都会慢。这些更改对于检测交易欺诈来说,这一变化很重要,因为它们导致所谓的概念漂移问题。因此,为了使TradaBoost更适合上述案例,因此,我们在本文中提出了改进的Tryaboost(Itradaboost)。它更新(即,增加或减少)根据从实例到目标域的分发距离的错误分类实例的权重,并且距离的计算基于再现内核希尔特空间的理论。我们在五个数据集进行了一系列实验,结果说明了Itradaboost的优势。

著录项

  • 来源
  • 作者单位

    CaiTong Secur Co Ltd Dept FinTech Res & Dev Hangzhou 310000 Peoples R China;

    Tongji Univ Key Lab Minist Educ Embed Syst & Serv Comp Shanghai 201804 Peoples R China|Tongji Univ Collaborat Innovat Ctr Shanghai Elect Transact & Shanghai 201804 Peoples R China;

    Tongji Univ Key Lab Minist Educ Embed Syst & Serv Comp Shanghai 201804 Peoples R China|Tongji Univ Collaborat Innovat Ctr Shanghai Elect Transact & Shanghai 201804 Peoples R China;

    Tongji Univ Key Lab Minist Educ Embed Syst & Serv Comp Shanghai 201804 Peoples R China|Tongji Univ Collaborat Innovat Ctr Shanghai Elect Transact & Shanghai 201804 Peoples R China;

    New Jersey Inst Technol Newark NJ 07102 USA;

    Tongji Univ Key Lab Minist Educ Embed Syst & Serv Comp Shanghai 201804 Peoples R China|Tongji Univ Collaborat Innovat Ctr Shanghai Elect Transact & Shanghai 201804 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Training; Testing; Credit cards; Boosting; Kernel; Boosting learning; E-commerce; transaction fraud detection; transfer learning;

    机译:培训;测试;信用卡;提升;核;提升学习;电子商务;交易欺诈检测;转移学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号