首页> 外文期刊>Computational Social Systems, IEEE Transactions on >An Agent-Based Model of Collective Decision-Making: How Information Sharing Strategies Scale With Information Overload
【24h】

An Agent-Based Model of Collective Decision-Making: How Information Sharing Strategies Scale With Information Overload

机译:基于代理的集体决策模型:信息如何共享策略与信息过载的规模

获取原文
获取原文并翻译 | 示例

摘要

Organizations rely on teams for complex decision-making. By bringing diverse information together and utilizing information sharing strategies, teams can make intelligent decisions. However, as organizations face increasing information overload, it has become unclear whether such strategies remain adequate or whether bounds on human rationality will prevail. We develop an agent-based model that simulates information sharing in teams, where critical information is distributed across its members. We tested how robust various information sharing strategies are to information overload and bounds on rationality in terms of the speed and accuracy of collective decision-making. Our results suggest distinct strategies depending on whether speed or accuracy is imperative and, more broadly, shed light on how intelligence is best attained in collective decision-making.
机译:组织依靠团队进行复杂的决策。通过将多样化的信息一起带来并利用信息共享策略,团队可以做出聪明的决策。然而,随着组织面临的信息超载,目前尚不清楚这些策略是否仍然足够或者人类理性的范围是否会占上风。我们开发了一种基于代理的模型,模拟了团队中的信息共享,其中关键信息分布在其成员身上。我们测试了各种信息共享策略的强劲如何,以在集体决策的速度和准确性方面对合理性的信息过载和界限。我们的结果表明了不同的策略,具体取决于速度或准确性是否是必要的,更广泛地,集体决策如何最佳地获得智能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号